Skip to main content

Advertisement

Log in

The critical power and related whole-body bioenergetic models

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This paper takes a performance-based approach to review the broad expanse of literature relating to whole-body models of human bioenergetics. It begins with an examination of the critical power model and its assumptions. Although remarkably robust, this model has a number of shortcomings. Attention to these has led to the development of more realistic and more detailed derivatives of the critical power model. The mathematical solutions to and associated behaviour of these models when subjected to imposed “exercise” can be applied as a means of gaining a deeper understanding of the bioenergetics of human exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arabi H, Vandewalle H, Kapitaniak B, Monod H (1999) Evaluation of wheelchair users in the field and in laboratory: feasibility of progressive tests and critical velocity tests. Int J Ind Ergon 24(5):483–491

    Article  Google Scholar 

  • Barstow TJ, Mole PA (1991) Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 71(6):2099–2106

    PubMed  CAS  Google Scholar 

  • Behncke H (1993) A mathematical model for the force and energetics in competitive running. J Math Biol 31:853–878

    Article  MATH  PubMed  CAS  Google Scholar 

  • Behncke H (1997) Optimization models for the force and energy in competitive running. J Math Biol 35(4):375–390

    Article  MATH  PubMed  CAS  MathSciNet  Google Scholar 

  • Biggerstaff K, Hill DW, Jackson SL, Sams BR (1992) Use of the critical power concept to evaluate anaerobic capacity in swimmers. Med Sci Sports Exerc 24(5):S75

    Google Scholar 

  • Billat LV (2001) Interval training for performance: a scientific and empirical practice—special recommendations for middle- and long-distance running, part 1: aerobic interval training. Sports Med 31(1):13–31

    Article  PubMed  CAS  Google Scholar 

  • Billat LV, Koralsztein JP, Morton RH (1999a) Time in human endurance models. Sports Med 6:359–379

    Article  Google Scholar 

  • Billat VL, Blondel N, Berthoin S (1999b) Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol Occup Physiol 80(2):159–161

    Article  CAS  Google Scholar 

  • Bishop D, Jenkins DG (1995) The influence of recovery duration between periods of exercise on the critical power function. Eur J Appl Physiol 72:115–120

    Article  CAS  Google Scholar 

  • Bishop D, Jenkins DG, Howard A (1998) The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med 19:125–129

    Article  PubMed  CAS  Google Scholar 

  • Bull AJ, Housh TJ, Johnson GO, Perry SR (2000) Electromyographic and mechanomyographic responses at critical power. Can J Appl Physiol 25(4):262–270

    PubMed  CAS  Google Scholar 

  • Carnevale TJ, Gaesser GA (1991) Effects of pedalling speed on the power-duration relationship for high-intensity exercise. Med Sci Sports Exerc 23(2):242–246

    PubMed  CAS  Google Scholar 

  • Cerretelli P, di Prampero PE (1987) Gas exchange in exercise. In: Fishman AP (ed) Handbook of physiology section 3: the respiratory system. American Physiological Society, Bethesda, pp 297–339

  • Christensen EH (1960) Intermittent and continuous running. Acta Physiol Scand 50:269–275

    Article  PubMed  CAS  Google Scholar 

  • Clingeleffer A, Naughton LM, Davoren B (1994) Critical power may be determined from two tests in elite kayakers. Eur J Appl Physiol 68:36–40

    Article  CAS  Google Scholar 

  • Cooper RA (1990) A force and energy optimisation model for wheelchair athletes. IEEE Trans Syst Man Cybern 20:444–449

    Article  MATH  Google Scholar 

  • Dekerle J, Sidney M, Hespel JM, Pelayo P (2002) Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances. Int J Sports Med 23(2):93–98

    Article  PubMed  CAS  Google Scholar 

  • Fukuba Y, Whipp BJ (1996) The “Endurance Parameter Ratio” of the power-duration curve and race variation strategy for distance running. In: Steinacker JM, Ward SA (eds) The physiology and pathophysiology of exercise tolerance. Plenum Press, New York, pp 321–328

    Google Scholar 

  • Fukuba Y, Whipp BJ (1999) A metabolic limit on the availability to make up for lost time in endurance events. J Appl Physiol 87:853–861

    PubMed  CAS  Google Scholar 

  • Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71

    Article  PubMed  CAS  Google Scholar 

  • Gaesser GA, Wilson LA (1988) Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. Int J Sports Med 9(6):417–421

    PubMed  CAS  Google Scholar 

  • Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO (1990) Modelling of the power endurance relationship for high intensity exercise. Med Sci Sports Exerc 22:S16

    Google Scholar 

  • Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ (1995) Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc 27(10):1430–1438

    PubMed  CAS  Google Scholar 

  • Green S (1994) A definition and systems view of anaerobic capacity. Eur J Appl Physiol 69:168–173

    Article  CAS  ADS  Google Scholar 

  • Green S (1995) Measurement of anaerobic work capacities in humans. Sports Med 19(1):32–42

    Article  PubMed  CAS  Google Scholar 

  • Green S, Dawson B (1993) Measurement of anaerobic capacities in humans. Definitions, limitations and unsolved problems. Sports Med 15(5):312–327

    Article  PubMed  CAS  Google Scholar 

  • Green S, Dawson BT, Goodman C, Carey MF (1994) Y-intercept of the maximal work duration relationship and anaerobic capacity in cyclists. Eur J Appl Physiol 69:550–556

    Article  CAS  Google Scholar 

  • Green S, Bishop D, Jenkins D (1995) Effect of end-point cadence on the maximal work–time relationship. Eur J Appl Physiol 71:559–561

    Article  CAS  Google Scholar 

  • Harman C (2002) A biomechanical power model for world-class 400 metre running. In: Cohen G, Langtry T (eds) Sixth Australian conference on mathematics and computing in sport. University of Technology, Sydney, pp 155–166

  • Heubert R, Bocquet V, Koralsztein JP, Billat V (2003) Effect of a four-week training regimen on time limit at VO2max. Can J Appl Physiol 28(5):717–736

    PubMed  Google Scholar 

  • Heubert R, Billat L, Chassaing P, Bocquet V, Morton R, Koralsztein J, di Prampero P (2004) Effect of a previous sprint on the parameters of the work-time to exhaustion relationship in high intensity cycling. Int J Sports Med 25:1–10

    Article  Google Scholar 

  • Hill DW (1993) The critical power concept. Sports Med 16(4):237–254

    PubMed  CAS  Google Scholar 

  • Hill DW (2004) The relationship between power and time to fatigue in cycle ergometer exercise. Int J Sports Med 25(5):357–361

    Article  PubMed  CAS  Google Scholar 

  • Hill D, Ferguson C (1999) A physiological description of critical velocity. Eur J Appl Physiol 79:290–293

    Article  CAS  Google Scholar 

  • Hill DW, Rose LE, Smith JC (1993) Estimates of anaerobic capacity derived using different models of the power–time relationship. Med Sci Sports Exerc 25:S108

    Google Scholar 

  • Hill DW, Smith JC, Chasteen SD, Leuschel JL, Miller SA (1994) Methodological considerations in estimations of parameters of the power–time relationship. Med Sci Sports Exerc 26(5):S44

    Google Scholar 

  • Hill DW, Alain C, Kennedy MD (2003) Modeling the relationship between velocity and time to fatigue in rowing. Med Sci Sports Exerc 35(12):2098–2105

    Article  PubMed  Google Scholar 

  • Housh DJ, Housh TJ, Bauge SM (1990) The methodological consideration for the determination of critical and anaerobic work capacity. Res Q Exerc Sport 61(4):406–409

    PubMed  CAS  Google Scholar 

  • Housh TJ, Devries HA, Housh DJ, Tichy MW, Smyth KD, Tichy AM (1991) The relationship between critical power and the onset of blood lactate accumulation. J Sports Med Phys Fitness 31(1):31–36

    PubMed  CAS  Google Scholar 

  • Housh TJ, Johnson GO, McDowell SL, Housh DJ, Pepper ML (1992) The relationship between anaerobic running capacity and peak plasma lactate. J Sports Med Phys Fitness 32(2):117–122

    PubMed  CAS  Google Scholar 

  • Housh TJ, Cramer JT, Bull AJ, Johnson GO, Housh DJ (2001) The effect of mathematical modeling on critical velocity. Eur J Appl Physiol 84:469–475

    Article  PubMed  CAS  Google Scholar 

  • Hughson RL, Orok C, Staudt L (1984) The high velocity running test to assess endurance running potential. Int J Sports Med 5:23–25

    PubMed  CAS  Google Scholar 

  • Jenkins DG, Quigley BM (1990) Blood lactate in trained cyclist during cycle ergometry at critical power. Eur J Appl Physiol 61:278–283

    Article  CAS  Google Scholar 

  • Jenkins DG, Quigley BM (1991) The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics 34(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Jenkins DG, Quigley BM (1992) Endurance training enhances critical power. Med Sci Sports Exerc 24(11):1283–1289

    PubMed  CAS  Google Scholar 

  • Jenkins D, Kretek K, Bishop D (1998) The duration of predicting trials influences time to fatigue at critical power. J Sci Med Sport 1(4):213–218

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386

    Article  PubMed  CAS  Google Scholar 

  • Kachouri M, Vandewalle H, Billat V, Huet M, Thomaidis M, Jousselin E, Monod H (1996) Critical velocity of continuous and intermittent running exercise—an example of the limits of the critical power concept. Eur J Appl Physiol 73(5):484–487

    Article  CAS  Google Scholar 

  • Keller JB (1973) A theory of competitive running. Phys Today 26(9):43–47

    Google Scholar 

  • Kennedy MD, Bell GJ (2000) A comparison of critical velocity estimates to actual velocities in predicting simulated rowing performance. Can J Appl Physiol 25(4):223–235

    PubMed  CAS  Google Scholar 

  • Kolbe T, Dennis SC, Selley E, Noakes TD, Lambert MI (1995) The relationship between critical power and running performance. J Sport Sci 13:265–269

    Article  CAS  Google Scholar 

  • Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, Dormois D (1990) The energetics of middle-distance running. Eur J Appl Physiol Occup Physiol 60(1):38–43

    Article  PubMed  CAS  Google Scholar 

  • Lane CJ, Steward RP, Hill DW (1994) Estimation of anaerobic capacity in swimmers using the critical power concept. Med Sci Sports Exerc 26(5):S44

    Google Scholar 

  • Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training—optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1):53–73

    Article  PubMed  Google Scholar 

  • Lloyd BB (1966) The energetics of running: an analysis of world records. Adv Sci 22:515–530

    PubMed  CAS  Google Scholar 

  • Lloyd BB (1967) World running records as maximal performances: oxygen debt and other limiting factors. Circ Res 20:218–226

    Google Scholar 

  • Margaria R (1976) Biomechanics and energetics of muscular exercise. Oxford University Press, Oxford

    Google Scholar 

  • Maronski R (1994) On optimal velocity during cycling. J Biomech 27:2205–2213

    Google Scholar 

  • Martin DE, Whyte GP (2000) Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes. Int J Sports Med 21(5):366–368

    Article  PubMed  CAS  Google Scholar 

  • Mathis F (1989) The effect of fatigue on running strategies. Siam Rev 31(2):306–309

    Article  MATH  Google Scholar 

  • McDermott KS, Forbes MR, Hill DW (1993) Application of the critical power concept to outdoor running. J Am Coll Sports Med 25(5):S109

    Google Scholar 

  • McLellan TM, Cheung SS, Jacobs I (1995) Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol 20(1):39–51

    PubMed  CAS  Google Scholar 

  • Miura A, Kino F, Kajitani S, Sato H, Fukuba Y (1999) The effect of oral creatine supplementation on the curvature constant parameter of the power-duration curve for cycle ergometry in humans. Jpn J Physiol 49(2):169–174

    Article  PubMed  CAS  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338

    Article  Google Scholar 

  • Moritani T, Nagata A, DeVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24(5):339–350

    Article  PubMed  CAS  Google Scholar 

  • Morton RH (1984) Solution to Margaria’s model of the energy processes during muscular exercise. In: Swift A (ed) Occasional publications in mathematics. Massey University, Palmerston North, pp 1–38

    Google Scholar 

  • Morton RH (1985a) Two-dimensional short-term model of oxygen-uptake kinetics. J Appl Physiol 58(5):1736–1740

    CAS  ADS  Google Scholar 

  • Morton RH (1985b) On a model of human bioenergetics. Eur J Appl Physiol 54:285–290

    Article  CAS  Google Scholar 

  • Morton RH (1986a) A three component model of human bioenergetics. J Math Biol 24:451–466

    Article  MATH  CAS  Google Scholar 

  • Morton RH (1986b) On a model of human bioenergetics II: maximal power and endurance. Eur J Appl Physiol 55:413–418

    Article  CAS  Google Scholar 

  • Morton RH (1990) Modelling human power and endurance. J Math Biol 28:49–64

    Article  MATH  PubMed  CAS  MathSciNet  Google Scholar 

  • Morton RH (1994) Critical power test for ramp exercise. Eur J Appl Physiol 69:435–438

    Article  CAS  Google Scholar 

  • Morton RH (1995) Critical power test for ramp exercise. Eur J Appl Physiol 71:379–380

    Article  CAS  MathSciNet  Google Scholar 

  • Morton RH (1996) A 3-parameter critical power model. Ergonomics 39(4):611–619

    Article  PubMed  CAS  Google Scholar 

  • Morton RH (1997) Alternate forms of the critical power test for ramp exercise. Ergonomics 40(5):511–514

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Morton RH (2004) On optimal race pace. In: Morton RH, Ganesalingam S (eds) Seventh Australasian conference on mathematics and computers in sport. Massey University, Palmerston North, pp 214–220

  • Morton RH, Billat LV (2004) The critical power model for intermittent exercise. Eur J Appl Physiol 91(2–3):303–307

    Article  PubMed  Google Scholar 

  • Morton RH, Bocquet V (2003) Modelling the slow component of oxygen uptake dynamics during ramp exercise. In: Subic A, Trivailo P, Alam F (eds) Sports dynamics: discovery and application. RMIT University, Melbourne, pp 157–164

    Google Scholar 

  • Morton RH, Gass GC (1987) A systems-model approach to the ventilatory anaerobic threshold. Eur J Appl Physiol Occup Physiol 56(3):367–373

    Article  PubMed  CAS  Google Scholar 

  • Morton RH, Hodgson DJ (1996) The relationship between power output and endurance: a brief review. Eur J Appl Physiol 73:491–502

    Article  CAS  Google Scholar 

  • Morton RH, Green S, Bishop D, Jenkins D (1997) Ramp and constant power trials produce equivalent critical power estimates. Med Sci Sports Exerc 29(6):833–836

    PubMed  CAS  Google Scholar 

  • Morton RH, Redstone MD, Laing DJ (2005) The critical power model and bench press weightlifting. J Sports Med Phys Fitness (in press)

  • Mureika JR (1997) A simple model for predicting sprint-race times accounting for energy loss on the curve. Can J Phys 75(11):837–851

    Article  CAS  ADS  Google Scholar 

  • Nadel ER (1988) The Daedalus project: overcoming the physiological limits of human powered flight. Med Sci Sports Exerc 20:S84

    Google Scholar 

  • Nadel ER (1996) The limits of human performance: project Daedalus. Res Q Exerc Sport 67(3):S71–S72

    PubMed  CAS  Google Scholar 

  • Olds T (2001) Modelling human locomotion—applications to cycling. Sports Med 31(7):497–509

    Article  PubMed  CAS  Google Scholar 

  • Olds TS, Norton KI, Craig NP (1993) Mathematical-model of cycling performance. J Appl Physiol 75(2):730–737

    PubMed  CAS  Google Scholar 

  • Olds TS, Norton KI, Lowe ELA, Olive S, Reay F, Ly S (1995) Modeling road-cycling performance. J Appl Physiol 78(4):1596–1611

    PubMed  CAS  Google Scholar 

  • Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 61(1):453–465

    Google Scholar 

  • Poole DC, Ward SA, Whipp BJ (1986) Effects of training on the metabolic and respiratory profile of high-intensity exercise. Physiologist 29:161

    Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31(9):1265–1279

    Article  PubMed  CAS  Google Scholar 

  • Poole DC, Ward SA, Whipp BJ (1990) The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol 59:421–429

    Article  CAS  Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmocol 89:144–222

    Google Scholar 

  • di Prampero PE (1999) The concept of critical velocity: a brief analysis. Eur J Appl Physiol Occup Physiol 80(2):162–164

    Article  PubMed  CAS  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    Article  PubMed  Google Scholar 

  • di Prampero PE, Peeters L, Margaria R (1973) Alactic O2 debt and lactic acid production after exhausting exercise in man. J Appl Physiol 35(5):628–632

    Google Scholar 

  • di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle distance running. J Appl Physiol 74(5):2318–2324

    PubMed  CAS  Google Scholar 

  • Saltin B, Karlsson J (1971) Muscle glycogen utilisation during work of different intensities. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 289–300

    Google Scholar 

  • Scarborough PA, Smith JC, Talbert SM, Hill DW (1991) Time to exhaustion at the power asymptote critical power in men and women. Med Sci Sports Exerc 23:S12

    Google Scholar 

  • Smith CGM, Jones AM (2001) The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol 85(1–2):19–26

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Hill DW, Talbert SM (1991) Prediction of the power asymptote in men and women: role of repeated testing. Med Sci Sports Exerc 23:S12

    Google Scholar 

  • Smith JC, Stephens DP, Hall EL, Jackson AW, Earnest CP (1998) Effect of oral creatine ingestion on parameters of the work rate–time relationship and time to exhaustion in high-intensity cycling. Eur J Appl Physiol 77:360–365

    Article  CAS  Google Scholar 

  • Steward RP, Lane CJ, Hill DW (1994) Application of the critical power concept to young swimmers. Med Sci Sports Exerc 26(5):S44

    Google Scholar 

  • Stokes D, Schwanawede T, Womack CJ, Weltman A, Gaesser GA (1993) Effects of strength training on the lactate threshold and parameters on the power endurance hyperbola. Med Sci Sports Exerc 25:S163

    Google Scholar 

  • Stout JR, Eckerson JM, JHT, Ebersole KT (1999) The effects of creatine supplementation on anaerobic working capacity. J Strength Cond Res 13(2):135–138

  • Swanson GD, Holland RA, Walleghem EBV (1992) Effect of prior leg exercise on high-intensity arm ergometry. Physiologist 35:199

    Google Scholar 

  • Talbert SM, Smith JC, Scarborough PA, Hill DW (1991) Relationships between the power asymptote and indices of anaerobic and aerobic power. Med Sci Sports Exerc 23(4):S27

    Google Scholar 

  • Taylor SA, Batterham AM (2002) The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise. Eur J Appl Physiol 87(1):43–49

    Article  PubMed  Google Scholar 

  • Tibshirani R (1997) Who is the fastest man in the world? Am Stat 51(2):106–111

    Article  Google Scholar 

  • Vandewalle H (1995) Critical power test for ramp exercise. Eur J Appl Physiol 71:285–286

    Article  CAS  Google Scholar 

  • Vandewalle H, Vautier JF, Kachouri M, Lechevalier J-M, Monod H (1997) Work–exhaustion time relationships and the critical power concept. J Sport Med Phys Fit 37:89–102

    CAS  Google Scholar 

  • Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M (1992a) Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol 54:153–157

    Article  Google Scholar 

  • Wakayoshi K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M (1992b) A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. Int J Sports Med 13(5):367–371

    CAS  Google Scholar 

  • Wakayoshi K, Yoshida T, Moritani T (1993) Does critical swimming velocity represent exercise intensity at maximal steady state. Med Sci Sports Exerc 25:S66

    Google Scholar 

  • Walsh ML (2000) Whole body fatigue and critical power. Sports Med 29(3):153–166

    Article  PubMed  CAS  ADS  Google Scholar 

  • Ward-Smith AJ (1985a) A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world-class athletes. J Biomech 18(5):337–349

    Article  CAS  Google Scholar 

  • Ward-Smith AJ (1985b) A mathematical analysis of the influence of adverse and favourable winds on sprinting. J Biomech 18(5):351–357

    Article  CAS  Google Scholar 

  • Ward-Smith AJ (1999a) The kinetics of anaerobic metabolism following the initiation of high-intensity exercise. Math Biosci 159(1):33–45

    Article  MATH  CAS  Google Scholar 

  • Ward-Smith AJ (1999b) Aerobic and anaerobic energy conversion during high-intensity exercise. Med Sci Sports Exerc 31(12):1855–1860

    Article  CAS  Google Scholar 

  • Ward-Smith AJ, Radford PF (2000a) Investigation of the kinetics of anaerobic metabolism by analysis of the performance of elite sprinters. J Biomech 33(8):997–1004

    Article  CAS  Google Scholar 

  • Ward-Smith AJ, Radford PF (2000b) Energy conversion rates during sprinting with an emphasis on the performance of female athletes. J Sports Sci 18(10):835–843

    Article  CAS  Google Scholar 

  • Whipp BJ, Huntsman DJ, Storer TW, Lamarra N, Wasserman K (1982) A constant which determines the duration of tolerance to high-intensity work. Fed Proc 41:1591

    Google Scholar 

  • Wilkie DR (1960) Man as a source of mechanical power. Ergonomics 3:1–8

    Article  Google Scholar 

  • Wilkie DR (1980) Equations describing power input by humans as a function of duration of exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier/North Holland Biomedical Press, Amsterdam, pp 74–80

    Google Scholar 

  • Woodside W (1991) The optimal strategy for running a race. Math Comput Model 15:1–12

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hugh Morton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, R.H. The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96, 339–354 (2006). https://doi.org/10.1007/s00421-005-0088-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-005-0088-2

Keywords

Navigation