Skip to main content
Log in

Lower Limb Muscle Size after Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 21 October 2021

A Letter to the Editor to this article was published on 21 October 2021

Abstract

Background

Anterior cruciate ligament (ACL) injury is known to have a number of deleterious effects on lower limb muscle function. Alterations in muscle size are one such effect that have implications towards reductions in strength and functioning of the lower limbs. However, a comprehensive analysis of alterations in muscle size has yet to be undertaken.

Objective

To systematically review the evidence investigating lower limb muscle size in ACL injured limbs.

Design

Systematic review

Data Sources

Database searches of Medline, SPORTDiscus, Embase, Cinahl and Web of Science as well as citation tracking and manual reference list searching.

Eligibility Criteria for Selecting Studies

Individuals with ACL deficient or reconstructed limbs with an assessment of lower limb muscle size and control limb data (contralateral or uninjured control group)

Methods

Risk of bias assessment was completed on included studies. Data were extracted and where possible meta-analyses performed. Best evidence synthesis was also undertaken.

Results

49 articles were included in this review, with 37 articles included in the meta-analyses. 66 separate meta-analyses were performed using various measures of lower limb muscle size. Across all measures, ACL deficient limbs showed lesser quadriceps femoris muscle size (d range = − 0.35 to − 0.40), whereas ACL reconstructed limbs showed lesser muscle size in the quadriceps femoris (d range = − 0.41 to − 0.69), vastus medialis (d = − 0.25), vastus lateralis (d = − 0.31), hamstrings (d = − 0.28), semitendinosus (d range = − 1.02 to − 1.14) and gracilis (d range = − 0.78 to − 0.99) when compared to uninjured limbs.

Conclusion

This review highlights the effect ACL injury has on lower limb muscle size. Regardless of whether an individual chooses a conservative or surgical approach, the quadriceps of the injured limb appear to have lesser muscle size compared to an uninjured limb. When undertaking reconstructive surgery with a semitendinosus/gracilis tendon graft, the harvested muscle shows lesser muscle size compared to the uninjured limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):1543. https://doi.org/10.1136/bjsports-2013-093398.

    Article  PubMed  Google Scholar 

  2. Welling W, Benjaminse A, Seil R, Lemmink K, Zaffagnini S, Gokeler A. Low rates of patients meeting return to sport criteria 9 months after anterior cruciate ligament reconstruction: a prospective longitudinal study. Knee Surg Sports Traumatol Arthrosc. 2018;2018:1–9. https://doi.org/10.1007/s00167-018-4916-4.

    Article  Google Scholar 

  3. Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44(6):1502–7. https://doi.org/10.1177/0363546516629944.

    Article  PubMed  Google Scholar 

  4. Sutherland K, Clatworthy M, Fulcher M, Chang K, Young SW. Marked increase in the incidence of anterior cruciate ligament reconstructions in young females in New Zealand. ANZ J Surg. 2019;89(9):1151–5. https://doi.org/10.1111/ans.15404.

    Article  PubMed  Google Scholar 

  5. Abram SGF, Price AJ, Judge A, Beard DJ. Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: Hospital statistics from 1997 to 2017. Br J Sports Med. 2020;54(5):286–91. https://doi.org/10.1136/bjsports-2018-100195.

    Article  PubMed  Google Scholar 

  6. Zbrojkiewicz D, Vertullo C, Grayson JE. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust. 2018;208(8):354–8. https://doi.org/10.5694/mja17.00974.

    Article  PubMed  Google Scholar 

  7. Janssen KW, Orchard JW, Driscoll TR, van Mechelen W. High incidence and costs for anterior cruciate ligament reconstructions performed in Australia from 2003–2004 to 2007–2008: time for an anterior cruciate ligament register by Scandinavian model? Scand J Med Sci Sports. 2012;22(4):495–501. https://doi.org/10.1111/j.1600-0838.2010.01253.x.

    Article  CAS  PubMed  Google Scholar 

  8. Webster KE, Feller JA, Kimp AJ, Whitehead TS. Low rates of return to preinjury sport after bilateral anterior cruciate ligament reconstruction. Am J Sports Med. 2018;2018:0363546518813901. https://doi.org/10.1177/0363546518813901.

    Article  Google Scholar 

  9. Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917–29. https://doi.org/10.1007/s40279-019-01093-x.

    Article  PubMed  Google Scholar 

  10. Culvenor AG, Cook JL, Collins NJ, Crossley KM. Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med. 2013;47(2):66–70. https://doi.org/10.1136/bjsports-2012-091490.

    Article  PubMed  Google Scholar 

  11. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69. https://doi.org/10.1177/0363546507307396.

    Article  PubMed  Google Scholar 

  12. Kim HJ, Lee JH, Ahn SE, Park MJ, Lee DH. Influence of anterior cruciate ligament tear on thigh muscle strength and hamstring-to-quadriceps ratio: A meta-analysis. PLoS One. 2016;11(1). doi:https://doi.org/10.1371/journal.pone.0146234.

  13. Larsen JB, Farup J, Lind M, Dalgas U. Muscle strength and functional performance is markedly impaired at the recommended time point for sport return after anterior cruciate ligament reconstruction in recreational athletes. Hum Mov Sci. 2015;39:73–87. https://doi.org/10.1016/j.humov.2014.10.008.

    Article  PubMed  Google Scholar 

  14. Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM. Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(3):303–12. https://doi.org/10.4085/1062-6050-49.5.06.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828–39. https://doi.org/10.1111/sms.12435.

    Article  CAS  PubMed  Google Scholar 

  16. Lepley LK, Palmieri-Smith RM. Pre-operative quadriceps activation is related to post-operative activation, not strength, in patients post-ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):236–46. https://doi.org/10.1007/s00167-014-3371-0.

    Article  PubMed  Google Scholar 

  17. Ward SH, Blackburn JT, Padua DA, Stanley LE, Harkey MS, Luc-Harkey BA, et al. Quadriceps neuromuscular function and jump-landing sagittal-plane knee biomechanics after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(2):135–43. https://doi.org/10.4085/1062-6050-306-16.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gumucio JP, Sugg KB, Enselman ERS, Konja AC, Eckhardt LR, Bedi A, et al. Anterior cruciate ligament tear induces a sustained loss of muscle fiber force production. Muscle Nerve. 2018;58(1):145–8. https://doi.org/10.1002/mus.26075.

    Article  CAS  Google Scholar 

  19. Konrath JM, Vertullo CJ, Kennedy BA, Bush HS, Barrett RS, Lloyd DG. Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(10):2589–98.

    Article  PubMed  Google Scholar 

  20. Lindström M, Strandberg S, Wredmark T, Felländer-Tsai L, Henriksson M. Functional and muscle morphometric effects of ACL reconstruction. A prospective CT study with 1 year follow-up. Scand J Med Sci Sports. 2013;23(4):431–42.

    Article  PubMed  Google Scholar 

  21. Nomura Y, Kuramochi R, Fukubayashi T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2015;25(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  22. Macleod TD, Snyder-Mackler L, Buchanan TS. Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2014;44(2):76–84.

    Article  PubMed  Google Scholar 

  23. Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L. Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med. 2005;33(3):402–7.

    Article  PubMed  Google Scholar 

  24. Friedmann-Bette B, Profit F, Gwechenberger T, Weiberg N, Parstorfer M, Weber M-A, et al. Strength training effects on muscular regeneration after ACL reconstruction. Med Sci Sports Exerc. 2018;50(6):1152–61.

    Article  PubMed  Google Scholar 

  25. Grapar Žargi T, Drobnič M, Vauhnik R, Koder J, Kacin A. Factors predicting quadriceps femoris muscle atrophy during the first 12weeks following anterior cruciate ligament reconstruction. Knee. 2017;24(2):319–28.

    Article  PubMed  Google Scholar 

  26. Lepley AS, Grooms DR, Burl, JP, Davi SM, Kinsella-Shaw JM et al. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019.

  27. Messer DJ, Shield AJ, Williams MD, Timmins RG, Bourne MN. Hamstring muscle activation and morphology are significantly altered 1–6 years after anterior cruciate ligament reconstruction with semitendinosus graft. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):733–41. https://doi.org/10.1007/s00167-019-05374-w.

    Article  PubMed  Google Scholar 

  28. Kuenze CM, Blemker SS, Hart JM. Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res. 2016;34(9):1656–62.

    Article  PubMed  Google Scholar 

  29. Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 2016;19(1):7–11.

    Article  PubMed  Google Scholar 

  30. Saxby DJ, Bryant AL, Modenese L, Gerus P, Killen BA, Konrath J, et al. Tibiofemoral contact forces in the anterior cruciate ligament-reconstructed knee. Med Sci Sports Exerc. 2016;48(11):2195–206. https://doi.org/10.1249/mss.0000000000001021.

    Article  PubMed  Google Scholar 

  31. Wellsandt E, Gardinier ES, Manal K, Axe MJ, Buchanan TS, Snyder-Mackler L. Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury. Am J Sports Med. 2016;44(1):143–51. https://doi.org/10.1177/0363546515608475.

    Article  PubMed  Google Scholar 

  32. Pietrosimone B, Pfeiffer SJ, Harkey MS, Wallace K, Hunt C, Blackburn JT, et al. Quadriceps weakness associates with greater T1rho relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018. https://doi.org/10.1007/s00167-018-5290-y.

    Article  PubMed  Google Scholar 

  33. Øiestad BE, Juhl CB, Eitzen I, Thorlund JB. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthritis Cartilage. 2015;23(2):171–7. https://doi.org/10.1016/j.joca.2014.10.008.

    Article  PubMed  Google Scholar 

  34. Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC. Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med. 2015;43(11):2727–37. https://doi.org/10.1177/0363546515602016.

    Article  PubMed  Google Scholar 

  35. Maniar N, Bryant AL, Sritharan P, Schache AG, Opar DA. Muscle contributions to medial and lateral tibiofemoral compressive loads during sidestep cutting. J Biomech. 2020;101. doi:https://doi.org/10.1016/j.jbiomech.2020.109641.

  36. Maniar N, Schache AG, Pizzolato C, Opar DA. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing. Scand J Med Sci Sports. 2020;30(9):1664–74. https://doi.org/10.1111/sms.13711.

    Article  PubMed  Google Scholar 

  37. Maniar N, Schache AG, Sritharan P, Opar DA. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting. Sci Rep. 2018;8(1):2501. https://doi.org/10.1038/s41598-017-19098-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019:1941738118822739. doi:https://doi.org/10.1177/1941738118822739.

  39. Birchmeier T, Lisee C, Kane K, Brazier B, Triplett A, Kuenze C. Quadriceps muscle size following acl injury and reconstruction: a systematic review. J Orth Res. 2020;38(3):598–608. https://doi.org/10.1002/jor.24489.

    Article  Google Scholar 

  40. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–84. https://doi.org/10.1136/jech.52.6.377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maniar N, Shield AJ, Williams MD, Timmins RG, Opar DA. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br J Sports Med. 2016;50(15):909–20. https://doi.org/10.1136/bjsports-2015-095311.

    Article  PubMed  Google Scholar 

  43. Grapar Zargi T, Drobnic M, Jkoder J, Strazar K, Kacin A. The effects of preconditioning with ischemic exercise on quadriceps femoris muscle atrophy following anterior cruciate ligament reconstruction: a quasi-randomized controlled trial. Eur J Phys Rehabil Med. 2016;52(3):310–20.

    PubMed  Google Scholar 

  44. Noehren B, Andersen A, Hardy P, Johnson DL, Irel ML, et al. Cellular and morphological alterations in the vastus lateralis muscle as the result of acl injury and reconstruction. J Bone Joint Surg Am. 2016;98(18):1541–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Setuain I, Izquierdo M, Idoate F, Bik, i E, Gorostiaga EM, et al. Differential effects of 2 rehabilitation programs following anterior cruciate ligament reconstruction. J Sport Rehabil. 2017;26(6):544–55.

  46. Wigerstad-Lossing I, Grimby G, Jonsson T, Morelli B, Peterson L, Renström P. Effects of electrical muscle stimulation combined with voluntary contractions after knee ligament surgery. Med Sci Sport Exerc. 1988;20(1):93–8.

    Article  CAS  Google Scholar 

  47. Viechtbauer W. Conducting meta-analyses in R with the metafor package. 2010. 2010;36(3):48. doi:https://doi.org/10.18637/jss.v036.i03.

  48. Schwarzer G. Meta: general package for meta-analysis. 2015.

  49. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9. https://doi.org/10.1037//0033-2909.112.1.155.

    Article  CAS  PubMed  Google Scholar 

  50. Slavin RE. Best evidence synthesis: an intelligent alternative to meta-analysis. J Clin Epidemiol. 1995;48(1):9–18. https://doi.org/10.1016/0895-4356(94)00097-a.

    Article  CAS  PubMed  Google Scholar 

  51. Arangio GA, Chen C, Kalady M, Reed JF 3rd. Thigh muscle size and strength after anterior cruciate ligament reconstruction and rehabilitation. J Orthop Sports Phys Ther. 1997;26(5):238–43.

    Article  CAS  PubMed  Google Scholar 

  52. Arvidsson I, Arvidsson H, Eriksson E, Jansson E. Prevention of quadriceps wasting after immobilization: an evaluation of the effect of electrical stimulation. Orthopedics. 1986;9(11):1519–28.

    Article  CAS  PubMed  Google Scholar 

  53. Burks RT, Crim J, Fink BP, Boylan DN, Greis PE. The effects of semitendinosus and gracilis harvest in anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(10):1177–85.

    Article  PubMed  Google Scholar 

  54. Eriksson K, Hamberg P, Jansson E, Larsson H, Shalabi A, Wredmark T. Semitendinosus muscle in anterior cruciate ligament surgery: Morphology and function. Arthroscopy. 2001;17(8):808–17.

    Article  CAS  PubMed  Google Scholar 

  55. Flück M, Viecelli C, Bapst AM, Kasper S, Valdivieso P, Franchi MV, et al. Knee extensors muscle plasticity over a 5-years rehabilitation process after open knee surgery. Front Physiol. 2018;9:1343.

  56. Gandolfi M, Ricci M, Sambugaro E, Valè N, Dimitrova E, Meschieri A, et al. Changes in the sensorimotor system and semitendinosus muscle morphometry after arthroscopic anterior cruciate ligament reconstruction: a prospective cohort study with 1-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3770–9. https://doi.org/10.1007/s00167-018-5020-5.

    Article  PubMed  Google Scholar 

  57. Garcia SA, Curran MT, Palmieri-Smith RM. Longitudinal assessment of quadriceps muscle morphology before and after anterior cruciate ligament reconstruction and its associations with patient-reported outcomes. Sports Health. 2020:1941738119898210. doi:https://doi.org/10.1177/1941738119898210.

  58. Janssen RPA, van der Velden MJF, Pasmans HLM, Sala HAGM. Regeneration of hamstring tendons after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):898–905.

    Article  PubMed  Google Scholar 

  59. Kariya Y, Itoh M, Nakamura T, Yagi K, Kurosawa H. Magnetic resonance imaging and spectroscopy of thigh muscles in cruciate ligament insufficiency. Acta Orthop Scand. 1989;60(3):322–5.

    Article  CAS  PubMed  Google Scholar 

  60. Konishi Y, Fukubayashi T. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport. 2010;13(1):101–5.

    Article  PubMed  Google Scholar 

  61. Konishi Y, Ikeda K, Nishino A, Sunaga M, Aihara Y, Fukubayashi T. Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament repair. Scand J Med Sci Sports. 2007;17(6):656–61.

    Article  CAS  PubMed  Google Scholar 

  62. Konishi Y, Kinugasa R, Oda T, Tsukazaki S, Fukubayashi T. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament lesion. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2270–4.

    Article  PubMed  Google Scholar 

  63. Konishi Y, Oda T, Tsukazaki S, Kinugasa R, Fukubayashi T. Relationship between quadriceps femoris muscle volume and muscle torque at least 18 months after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2012;22(6):791–6.

    Article  CAS  PubMed  Google Scholar 

  64. Lopresti C, Kirkendall DT, Street GM, Dudley AW. Quadriceps insufficiency following repair of the anterior cruciate ligament. J Orthop Sports Phys Ther. 1988;9(7):245–9.

    Article  CAS  PubMed  Google Scholar 

  65. Lorentzon R, Elmqvist LG, Sjöström M, Fagerlund M, Fuglmeyer AR. Thigh musculature in relation to chronic anterior cruciate ligament tear: muscle size, morphology, and mechanical output before reconstruction. Am J Sports Med. 1989;17(3):423–9.

    Article  CAS  PubMed  Google Scholar 

  66. Macleod TD, Snyder-Mackler L, Axe MJ, Buchanan TS. Early regeneration determines long-term graft site morphology and function after reconstruction of the anterior cruciate ligament with semitendinosus-gracilis autograft: a case series. Int J Sports Phys Ther. 2013;8(3):256–68.

    PubMed  PubMed Central  Google Scholar 

  67. Marcon M, Ciritsis B, Laux C, Nanz D, Fischer MA, Andreisek G, et al. Quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction. J Magn Reson Imaging. 2015;42(2):515–25.

    Article  PubMed  Google Scholar 

  68. Marcon M, Ciritsis B, Laux C, Nanz D, Nguyen-Kim TDL, Fischer MA, et al. Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions. Eur Radiol. 2014;25(2):290–8.

    Article  PubMed  Google Scholar 

  69. Nishino A, Sanada A, Kanehisa H, Fukubayashi T. Knee-flexion torque and morphology of the semitendinosus after ACL reconstruction. Med Sci Sports Exerc. 2006;38(11):1895–900.

    Article  PubMed  Google Scholar 

  70. Reeves ND, Maganaris CN, Maffulli N, Rittweger J. Human patellar tendon stiffness is restored following graft harvest for anterior cruciate ligament surgery. J Biomech. 2009;42(7):797–803.

    Article  PubMed  Google Scholar 

  71. Simonian PT, Harrison SD, Cooley VJ, Escabedo EM, Deneka DA, Larson RV. Assessment of morbidity of semitendinosus and gracilis tendon harvest for ACL reconstruction. Am J Knee Surg. 1997;10(2):54–9.

    CAS  PubMed  Google Scholar 

  72. Strandberg S, Lindström M, Wretling M-L, Aspelin P, Shalabi A. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: aspects on using non-injured leg as control. BMC Musculoskelet Disord. 2013;14:150.

  73. Williams GN, Snyder-Mackler L, Barrance PJ, Axe MJ, Buchanan TS. Muscle and tendon morphology after reconstruction of the anterior cruciate ligament with autologous semitendinosus-gracilis graft. J Bone Jt Surg Am. 2004;86(9):1936–46.

    Article  Google Scholar 

  74. Williams GN, Snyder-Mackler L, Barrance PJ, Buchanan TS. Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech. 2005;38(4):685–93.

    Article  PubMed  Google Scholar 

  75. Gerber JP, Marcus RL, Dibble L, E., Greis PE, Burks RT, et al. Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction. J Bone Jt Surg Am. 2007;89(3):559–70.

  76. Hunnicutt JL, Gregory CM, McLeod MM, Woolf SK, Chapin RW, Slone HS. Quadriceps recovery after anterior cruciate ligament reconstruction with quadriceps tendon versus patellar tendon autografts. Orthop J Sports Med. 2019;7(4):1–7. https://doi.org/10.1177/2325967119839786.

    Article  Google Scholar 

  77. Hunnicutt JL, McLeod MM, Slone HS, Gregory CM. Quadriceps muscle strength, size, and activation and physical function after anterior cruciate ligament reconstruction. J Athl Train. 2020. https://doi.org/10.4085/1062-6050-516-18.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Irie K, Tomatsu T. Atrophy of semitendinosus and gracilis and flexor mechanism function after hamstring tendon harvest for anterior cruciate ligament reconstruction. Orthopedics. 2002;25(5):491–5.

    Article  PubMed  Google Scholar 

  79. Kellis E, Karagiannidis E, Patsika G. Patellar tendon and hamstring moment-arms and cross-sectional area in patients with anterior cruciate ligament reconstruction and controls. Comput Methods Biomech Biomed Engin. 2015;18(10):1083–9.

    Article  PubMed  Google Scholar 

  80. Snow BJ, Wilcox JJ, Burks RT, Greis PE. Evaluation of muscle size and fatty infiltration with MRI nine to eleven years following hamstring harvest for ACL reconstruction. J Bone Jt Surg Am. 2012;94(14):1274–82.

    Article  Google Scholar 

  81. Takahashi K, Hayashi M, Fujii T, Kawamura K, Ozaki T. Early rehabilitation with weight-bearing standing-shaking-board exercise in combination with electrical muscle stimulation after anterior cruciate ligament reconstruction. Acta Med Okayama. 2012;66(3):231–7.

    PubMed  Google Scholar 

  82. Karagiannidis E, Kellis E, Galanis N, Vasilios B. Semitendinosus muscle architecture during maximum isometric contractions in individuals with anterior cruciate ligament reconstruction and controls. Muscles Ligaments Tendons J. 2017;7(1):147–51.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kilgas MA, Lytle LLM, Drum SN, Elmer SJ. Exercise with blood flow restriction to improve quadriceps function long after acl reconstruction. Int J Sports Med. 2019;40(10):650–6. https://doi.org/10.1055/a-0961-1434.

    Article  PubMed  Google Scholar 

  84. Longo UG, Rizzello G, Frnaceschi F, Campi S, Maffulli N, Denaro V. The architecture of the ipsilateral quadriceps two years after successful anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Knee. 2014;21(3):721–5.

    Article  PubMed  Google Scholar 

  85. Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48(3):337–45.

    Article  PubMed  Google Scholar 

  86. Grindem H, Wellsandt E, Failla M, Snyder-Mackler L, Risberg MA. Anterior cruciate ligament injury-who succeeds without reconstructive surgery? The Delaware-Oslo acl cohort study. Orthop J Sports Med. 2018;6(5):2325967118774255. https://doi.org/10.1177/2325967118774255.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bodine SC. Disuse-induced muscle wasting. Int J Biochem Cell Biol. 2013;45(10):2200–8. https://doi.org/10.1016/j.biocel.2013.06.011.

    Article  CAS  PubMed  Google Scholar 

  88. Brooks N, Myburgh K. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol. 2014;5(99). doi:https://doi.org/10.3389/fphys.2014.00099.

  89. Maniar N, Schache AG, Cole MH, Opar DA. Lower-limb muscle function during sidestep cutting. J Biomech. 2019. https://doi.org/10.1016/j.jbiomech.2018.10.021.

    Article  PubMed  Google Scholar 

  90. Hughes L, Rosenblatt B, Haddad F, Gissane C, McCarthy D, Clarke T, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK national health service randomised controlled trial. Sports Med. 2019;49(11):1787–805.

    Article  PubMed  Google Scholar 

  91. Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):62–8.

    Article  PubMed  Google Scholar 

  92. Bregenhof B, Jørgensen U, Aagaard P, Nissen N, Creaby MW, Thorlund JB, et al. The effect of targeted exercise on knee-muscle function in patients with persistent hamstring deficiency following ACL reconstruction – study protocol for a randomized controlled trial. Trials. 2018;19(1):75. https://doi.org/10.1186/s13063-018-2448-3.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Patterson BE, Crossley KM, Perraton LG, Kumar AS, King MG, Heerey JJ, et al. Limb symmetry index on a functional test battery improves between one and five years after anterior cruciate ligament reconstruction, primarily due to worsening contralateral limb function. Phys Ther Sport. 2020;44:67–74. https://doi.org/10.1016/j.ptsp.2020.04.031.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jessica Dickson, Senior Librarian at Australian Catholic University, Melbourne, Australia, for help preparing the literature search strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Dutaillis.

Ethics declarations

Conflict of interest

Benjamin Dutaillis, Nirav Maniar, David Opar, Jack Hickey and Ryan Timmins declare that they have no conflicts of interest relevant to the content of this review.

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Author contributions

Concept and design (BD, NM, DAO and RGT), running of search strategy (BD), inclusion/exclusion criteria assessment (BD and JTH), quality assessment (BD and RGT), data extraction (BD), data analysis and interpretation (BD, NM, DAO, JTH and RGT), manuscript preparation (BD, NM, DAO, JTH and RGT).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutaillis, B., Maniar, N., Opar, D.A. et al. Lower Limb Muscle Size after Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis. Sports Med 51, 1209–1226 (2021). https://doi.org/10.1007/s40279-020-01419-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01419-0

Navigation