Skip to main content
Log in

Muscle Oximetry in Sports Science: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Since the introduction (in 2006) of commercially available portable wireless muscle oximeters, the use of muscle near-infrared spectroscopy (NIRS) technology is gaining in popularity as an application to observe changes in muscle metabolism and muscle oxygenation during and after exercise or training interventions in both laboratory and applied sports settings.

Objectives

The objectives of this systematic review were to highlight the application of muscle oximetry in evaluating oxidative skeletal muscle performance to sport activities and emphasize how this technology has been applied to exercise and training.

Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed in a systematic fashion to search, assess and synthesize existing literature on this topic. The Scopus and MEDLINE/PubMed electronic databases were searched to 1 March 2017. Potential inclusions were screened against eligibility criteria relating to recreationally trained to elite athletes, with or without training programs, who must have assessed physiological variables monitored by commercial oximeters or NIRS instrumentation.

Results

Of the 14,609 identified records, only 57 studies met the eligibility criteria. This systematic review highlighted a number of key findings in 16 sporting activities. Overall, NIRS information can be used as a marker of skeletal muscle oxidative capacity and for analyzing muscle performance factors.

Conclusions

Although NIRS instrumentation is promising in evaluating oxidative skeletal muscle performance when used in sport settings, there is still the need for further instrumental development and randomized/longitudinal trials to support the detailed advantages of muscle oximetry utilization in sports science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev. 2000;28(3):123–7.

    CAS  PubMed  Google Scholar 

  2. Ferrari M, Quaresima V. Near infrared brain and muscle oximetry: from the discovery to current applications. J Near Infrared Spectrosc. 2012;20(1):1–14.

    Article  CAS  Google Scholar 

  3. Poole DC, Mathieu-Costello O. Skeletal muscle capillary geometry: adaptation to chronic hypoxia. Respir Physiol. 1989;77(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bendahan D, Chatel B, Jue T. Comparative NMR and NIRS analysis of oxygen dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol. 2017;. https://doi.org/10.1152/ajpregu.00203.2017 (Epub 6 Sep 2017).

    PubMed  Google Scholar 

  5. Ferrari M, Muthalib M, Quaresima V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A. 1955;2011(369):4577–90.

    Google Scholar 

  6. Hamaoka T, McCully KK, Niwayama M, et al. The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philos Trans A. 1955;2011(369):4591–604.

    Google Scholar 

  7. Hamaoka T, McCully KK, Quaresima V, et al. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt. 2007;12(6):062105.

    Article  PubMed  Google Scholar 

  8. Grassi B, Quaresima V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective. J Biomed Opt. 2016;21(9):091313.

    Article  PubMed  Google Scholar 

  9. Chance B, Dait MT, Zhang C, et al. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol. 1992;262(3 Pt 1):C766–75.

    Article  CAS  PubMed  Google Scholar 

  10. Quaresima V, Lepanto R, Ferrari M. The use of near infrared spectroscopy in sports medicine. J Sports Med Phys Fitness. 2003;43(1):1–13.

    CAS  PubMed  Google Scholar 

  11. Neary JP. Application of near infrared spectroscopy to exercise sports science. Can J Appl Physiol. 2004;29(4):488–503.

    Article  PubMed  Google Scholar 

  12. Bhambhani Y. Application of near infrared spectroscopy in evaluating cerebral and muscle haemodynamics during exercise and sports. J Near Infrared Spectrosc. 2012;20(1):117–39.

    Article  CAS  Google Scholar 

  13. Scholkmann F, Kleiser S, Metz AJ, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014;85(Pt 1):6–27.

    Article  PubMed  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sperlich B, Born DP, Swarén M, et al. Is leg compression beneficial for alpine skiers? BMC Sports Sci Med Rehabil. 2013;5(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fryer S, Stoner L, Scarrott C, et al. Forearm oxygenation and blood flow kinetics during a sustained contraction in multiple ability groups of rock climbers. J Sports Sci. 2015;33(5):518–26.

    Article  PubMed  Google Scholar 

  17. Fryer S, Stoner L, Stone K, et al. Forearm muscle oxidative capacity index predicts sport rock-climbing performance. Eur J Appl Physiol. 2016;116(8):1479–84.

    Article  CAS  PubMed  Google Scholar 

  18. Fryer SM, Stoner L, Dickson TG, et al. Oxygen recovery kinetics in the forearm flexors of multiple ability groups of rock climbers. J Strength Cond Res. 2015;29(6):1633–9.

    Article  PubMed  Google Scholar 

  19. Giles D, Romero VE, Garrido I, et al. Differences in oxygenation kinetics between the dominant and nondominant flexor digitorum profundus in rock climbers. Int J Sports Physiol Perform. 2017;12(1):137–9.

    Article  PubMed  Google Scholar 

  20. Macleod D, Sutherland DL, Buntin L, et al. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J Sports Sci. 2007;25(12):1433–43.

    Article  CAS  PubMed  Google Scholar 

  21. Philippe M, Wegst D, Müller T, et al. Climbing-specific finger flexor performance and forearm muscle oxygenation in elite male and female sport climbers. Eur J Appl Physiol. 2012;112(8):2839–47.

    Article  PubMed  Google Scholar 

  22. Bailey SJ, Vanhatalo A, Black MI, et al. Effects of priming and pacing strategy on oxygen-uptake kinetics and cycling performance. Int J Sports Physiol Perform. 2016;11(4):440–7.

    Article  PubMed  Google Scholar 

  23. Boone J, Koppo K, Barstow TJ, et al. Effect of exercise protocol on deoxy[Hb + Mb]: incremental step versus ramp exercise. Med Sci Sports Exerc. 2010;42(5):935–42.

    Article  PubMed  Google Scholar 

  24. Brizendine JT, Ryan TE, Larson RD, et al. Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy. Med Sci Sports Exerc. 2013;45(5):869–75.

    Article  CAS  PubMed  Google Scholar 

  25. Gendron P, Dufresne P, Laurencelle L, et al. Performance and cycling efficiency after supra-maximal interval training in trained cross-country mountain bikers. Int J Appl Sports Sci. 2016;28(1):19–30.

    Google Scholar 

  26. Faiss R, Léger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One. 2013;8(2):e56522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamlin MJ, Marshall HC, Hellemans J, et al. Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: a preliminary report. Appl Physiol Nutr Metab. 2010;35(4):548–59.

    Article  CAS  PubMed  Google Scholar 

  28. Hopker JG, O’Grady C, Pageaux B. Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand J Med Sci Sports. 2017;27(4):408–17.

    Article  CAS  PubMed  Google Scholar 

  29. Iannetta D, Qahtani A, Mattioni Maturana F, et al. The near-infrared spectroscopy-derived deoxygenated haemoglobin breaking-point is a repeatable measure that demarcates exercise intensity domains. J Sci Med Sport. 2017;20(9):873–7.

    Article  PubMed  Google Scholar 

  30. Racinais S, Buchheit M, Girard O. Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Front Physiol. 2014;5:142.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Skovereng K, Ettema G, van Beekvelt MCP. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate. Eur J Appl Physiol. 2016;116(6):1207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sperlich B, Zinner C, Pfister R, et al. Repeated apnea-induced contraction of the spleen in cyclists does not enhance performance in a subsequent time-trial. Eur J Appl Physiol. 2015;115(1):205–12.

    Article  PubMed  Google Scholar 

  33. Vogiatzis I, Athanasopoulos D, Habazettl H, et al. Intercostal muscle blood flow limitation in athletes during maximal exercise. J Physiol. 2009;587(Pt 14):3665–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wittekind A, Cooper CE, Elwell CE, et al. Warm-up effects on muscle oxygenation, metabolism and sprint cycling performance. Eur J Appl Physiol. 2012;112(8):3129–39.

    Article  CAS  PubMed  Google Scholar 

  35. Zorgati H, Collomp K, Boone J, et al. Effect of pedaling cadence on muscle oxygenation during high-intensity cycling until exhaustion: a comparison between untrained subjects and triathletes. Eur J Appl Physiol. 2015;115(12):2681–9.

    Article  PubMed  Google Scholar 

  36. Brocherie F, Millet GP, Girard O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur J Appl Physiol. 2015;115(5):891–903.

    Article  PubMed  Google Scholar 

  37. McLean S, Kerhervé H, Lovell GP, et al. The effect of recovery duration on vastus lateralis oxygenation, heart rate, perceived exertion and time motion descriptors during small sided football games. PLoS One. 2016;11(2):e0150201.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bieuzen F, Borne R, Toussaint JF, et al. Positive effect of specific low-frequency electrical stimulation during short-term recovery on subsequent high-intensity exercise. Appl Physiol Nutr Metab. 2014;39(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  39. Kounalakis SN, Bayios IA, Koskolou MD, et al. Anaerobic capacity of the upper arms in top-level team handball players. Int J Sports Physiol Perform. 2008;3(3):251–61.

    Article  PubMed  Google Scholar 

  40. Jones B, Hamilton DK, Cooper CE. Muscle oxygen changes following sprint interval cycling training in elite field hockey players. PLoS One. 2015;10(3):e0120338.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kujach S, Ziemann E, Grzywacz T, et al. Muscle oxygenation in response to high intensity interval exercises among high trained judokas. Isokinet Exerc Sci. 2016;24(3):263–75.

    Article  Google Scholar 

  42. Dascombe B, Laursen P, Nosaka K, et al. No effect of upper body compression garments in elite flat-water kayakers. Eur J Sport Sci. 2013;13(4):341–9.

    Article  PubMed  Google Scholar 

  43. Kjeld T, Rasmussen MR, Jattu T, et al. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151–5.

    Article  PubMed  Google Scholar 

  44. Jones B, Cooper CE. Use of NIRS to assess effect of training on peripheral muscle oxygenation changes in elite rugby players performing repeated supramaximal cycling tests. Adv Exp Med Biol. 2014;812:333–9.

    Article  CAS  PubMed  Google Scholar 

  45. Jones B, Hesford CM, Cooper CE. The use of portable NIRS to measure muscle oxygenation and haemodynamics during a repeated sprint running test. Adv Exp Med Biol. 2013;789:185–91.

    Article  CAS  PubMed  Google Scholar 

  46. Born DP, Stöggl T, Swarén M, et al. Running in hilly terrain: NIRS is more accurate to monitor intensity than heart rate. Int J Sports Physiol Perform. 2017;12(4):440–7.

    Article  PubMed  Google Scholar 

  47. Buchheit M, Laursen PB, Ahmaidi S. Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men. J Appl Physiol. 2009;107(2):460–70.

    Article  CAS  PubMed  Google Scholar 

  48. Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med. 2009;30(6):418–25.

    Article  CAS  PubMed  Google Scholar 

  49. Buchheit M, Bishop D, Haydar B, et al. Physiological responses to shuttle repeated-sprint running. Int J Sports Med. 2010;31(6):402–9.

    Article  CAS  PubMed  Google Scholar 

  50. Buchheit M. Performance and physiological responses to repeated-sprint and jump sequences. Eur J Appl Physiol. 2010;110(5):1007–18.

    Article  PubMed  Google Scholar 

  51. Buchheit M, Ufland P, Haydar B, et al. Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clin Physiol Funct Imaging. 2011;31(5):337–46.

    Article  PubMed  Google Scholar 

  52. Buchheit M, Haydar B, Hader K, et al. Assessing running economy during field running with changes of direction: application to 20 m shuttle runs. Int J Sports Physiol Perform. 2011;6(3):380–95.

    Article  PubMed  Google Scholar 

  53. Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol. 2011;111(2):293–301.

    Article  PubMed  Google Scholar 

  54. Kerhervé HA, Samozino P, Descombe F, et al. Calf compression sleeves change biomechanics but not performance and physiological responses in trail running. Front Physiol. 2017;8:247.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kitada T, Machida S, Naito H. Influence of muscle fibre composition on muscle oxygenation during maximal running. BMJ Open Sport Exerc Med. 2015;1(1):e000062.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oueslati F, Boone J, Ahmaidi S. Respiratory muscle endurance, oxygen saturation index in vastus lateralis and performance during heavy exercise. Respir Physiol Neurobiol. 2016;227:41–7.

    Article  PubMed  Google Scholar 

  57. Stevens CJ, Hacene J, Sculley DV, et al. The reliability of running performance in a 5 km time trial on a non-motorized treadmill. Int J Sports Med. 2015;36(9):705–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ufland P, Ahmaidi S, Buchheit M. Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: effect of training background. Int J Sports Med. 2013;34(10):924–30.

    Article  CAS  PubMed  Google Scholar 

  59. Vercruyssen F, Easthope C, Bernard T, et al. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise. Eur J Sport Sci. 2014;14(2):144–50.

    Article  PubMed  Google Scholar 

  60. Vogiatzis I, Tzineris D, Athanasopoulos D, et al. Quadriceps oxygenation during isometric exercise in sailing. Int J Sports Med. 2008;29(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  61. Vogiatzis I, Andrianopoulos V, Louvaris Z, et al. Quadriceps muscle blood flow and oxygen availability during repetitive bouts of isometric exercise in simulated sailing. J Sport Sci. 2011;29(10):1041–9.

    Article  Google Scholar 

  62. Born DP, Zinner C, Herlitz B, et al. Muscle oxygenation asymmetry in ice speed skaters: not compensated by compression. Int J Sports Physiol Perform. 2014;9(1):58–67.

    Article  PubMed  Google Scholar 

  63. Hesford CM, Laing SJ, Cardinale M, et al. Asymmetry of quadriceps muscle oxygenation during elite short-track speed skating. Med Sci Sports Exerc. 2012;44(3):501–8.

    Article  CAS  PubMed  Google Scholar 

  64. Hesford CM, Laing S, Cardinale M, et al. Effect of race distance on muscle oxygenation in short-track speed skating. Adv Exp Med Biol. 2013;45(1):83–92.

    CAS  Google Scholar 

  65. Hesford C, Cardinale M, Laing S, et al. NIRS measurements with elite speed skaters: comparison between the ice rink and the laboratory. Adv Exp Med Biol. 2013;765:81–6.

    Article  CAS  PubMed  Google Scholar 

  66. Hettinga FJ, Konings MJ, Cooper CE. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Faiss R, Willis S, Born DP, et al. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med Sci Sports Exerc. 2015;47(4):809–17.

    Article  PubMed  Google Scholar 

  68. Hesford CM, Laing S, Cooper CE. Using portable NIRS to compare arm and leg muscle oxygenation during roller skiing in biathletes: a case study. Adv Exp Med Biol. 2013;789:179–84.

    Article  CAS  PubMed  Google Scholar 

  69. Paradis-Deschênes P, Joanisse DR, Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016;41(9):938–44.

    Article  PubMed  Google Scholar 

  70. Paradis-Deschênes P, Joanisse DR, Billaut F. Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Front Physiol. 2017;7:674.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jones B, Cooper CE. Underwater near-infrared spectroscopy: muscle oxygen changes in the upper and lower extremities in club level swimmers and triathletes. Adv Exp Med Biol. 2016;876:35–40.

    Article  CAS  PubMed  Google Scholar 

  72. Jones B, Dat M, Cooper CE. Underwater near-infrared spectroscopy measurements of muscle oxygenation: laboratory validation and preliminary observations in swimmers and triathletes. J Biomed Opt. 2014;19:127002.

    Article  PubMed  Google Scholar 

  73. Southern WM, Ryan TE, Reynolds MA, et al. Reproducibility of near-infrared spectroscopy measurements of oxidative function and postexercise recovery kinetics in the medial gastrocnemius muscle. Appl Physiol Nutr Metab. 2014;39(5):521–9.

    Article  CAS  PubMed  Google Scholar 

  74. Hamaoka T, Iwane H, Shimomitsu T, et al. Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J Appl Physiol. 1996;81(3):1410–7.

    Article  CAS  PubMed  Google Scholar 

  75. Ryan TE, Brophy P, Lin CT, et al. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: a comparison with in situ measurements. J Physiol. 2014;592:3231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhambhani YM, Buckley SM, Susaki T. Detection of ventilatory threshold using near infrared spectroscopy in men and women. Med Sci Sports Exerc. 1997;29:402–9.

    Article  CAS  PubMed  Google Scholar 

  77. Denis R, Bringard A, Perrey S. Vastus lateralis oxygenation dynamics during maximal fatiguing concentric and eccentric isokinetic muscle actions. J Electromyogr Kinesiol. 2011;21(2):276–82.

    Article  PubMed  Google Scholar 

  78. Partsch H, Mosti G. Comparison of three portable instruments to measure compression pressure. Int Angiol. 2010;29(5):426–30.

    CAS  PubMed  Google Scholar 

  79. Cardinale M, Varley MC. Wearable training-monitoring technology: applications, challenges, and opportunities. Int J Sports Physiol Perform. 2017;12(Suppl 2):S255–62.

    Article  PubMed  Google Scholar 

  80. Koga S, Rossiter HB, Heinonen I, et al. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc. 2014;46(456):860–76.

    Article  CAS  PubMed  Google Scholar 

  81. Vogiatzis I, Habazettl H, Louvaris Z, et al. A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy. J Appl Physiol. 2015;118(6):783–93.

    Article  CAS  PubMed  Google Scholar 

  82. Crum EM, O’Connor WJ, Van Loo L, et al. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017;17(8):1037–43.

    Article  CAS  PubMed  Google Scholar 

  83. Benni PB, MacLeod Ikeda K, et al. A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements. J Clin Monit Comput. 2017;. https://doi.org/10.1007/s10877-017-0015-1 (epub 3 Apr 2017).

    PubMed  Google Scholar 

  84. Niemeijer VM, Spee RF, Jansen JP, et al. Test-retest reliability of skeletal muscle oxygenation measurements during submaximal cycling exercise in patients with chronic heart failure. Clin Physiol Funct Imaging. 2017;37(1):68–78.

    Article  CAS  PubMed  Google Scholar 

  85. Scott BR, Slattery KM, Sculley DV, et al. Reliability of telemetric electromyography and near-infrared spectroscopy during high-intensity resistance exercise. J Electromyogr Kinesiol. 2014;24(5):722–30.

    Article  PubMed  Google Scholar 

  86. Niemeijer VM, Jansen JP, van Dijk T, et al. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: the extent of the problem. Physiol Meas. 2017;38(3):539–54.

    Article  PubMed  Google Scholar 

  87. Borges NR, Driller MW. Wearable lactate threshold predicting device is valid and reliable in runners. J Strength Cond Res. 2016;30(8):2212–8.

    Article  PubMed  Google Scholar 

  88. Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organ Res Methods. 2016;. https://doi.org/10.1177/1094428116658959 (epub 18 Jul 2016).

    Google Scholar 

  89. Hu G, Zhang Q, Ivkovic V, et al. Ambulatory diffuse optical tomography and multimodality physiological monitoring system for muscle and exercise applications. J Biomed Opt. 2016;21(9):091314.

    Article  PubMed  Google Scholar 

  90. Shang Y, Li T, Yu G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol Meas. 2017;38(4):R1–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rosanna De Carolis for technical support.

Author information

Authors and Affiliations

Authors

Contributions

Stephane Perrey and Marco Ferrari contributed to the planning, literature appraisal and writing of the review, and read and approved the final version submitted for publication.

Corresponding author

Correspondence to Stephane Perrey.

Ethics declarations

Conflicts of Interest

Stephane Perrey and Marco Ferrari declare that they have no conflicts of interest relevant to the content of this review.

Funding

No sources of funding were used to assist in the study design; collection, analysis and interpretation of data; or writing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrey, S., Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med 48, 597–616 (2018). https://doi.org/10.1007/s40279-017-0820-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0820-1

Navigation