Skip to main content
Log in

Managing the Underlying Cause of Cystic Fibrosis: A Future Role for Potentiators and Correctors

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF), a severe genetic disease, is caused by mutations that alter the structure and function of CFTR, a plasma membrane channel permeable to chloride and bicarbonate. Defective anion transport in CF irreversibly damages the lungs, pancreas, liver, and other organs. CF mutations cause loss of CFTR function in multiple ways. In particular, class 3 mutations such as p.Gly551Asp strongly decrease the time spent by CFTR in the open state (gating defect). Instead, class 2 mutations impair the maturation of CFTR protein and its transport from the endoplasmic reticulum to the plasma membrane (trafficking defect). The deletion of phenylalanine 508 (p.Phe508del), the most frequent mutation among CF patients (70–90 %), destabilizes the CFTR protein, thus causing both a trafficking and a gating defect. These two defects can be overcome with drug-like molecules generically called correctors and potentiators, respectively. The potentiator Kalydeco™ (also known as Ivacaftor or VX-770), developed by Vertex Pharmaceuticals, has been recently approved by the US FDA and the European Medicines Agency (EMA) for the treatment of CF patients carrying at least one CFTR allele with the p.Gly551Asp mutation (2–5 % of all patients). In contrast, the corrector VX-809, which significantly improves p.Phe508del-CFTR trafficking in vitro, is still under study in clinical trials. Because of multiple defects caused by the p.Phe508del mutation, it is probable that rescue of the mutant protein will require combined treatment with correctors having different mechanisms of action. This review evaluates the status of experimental and clinical research in pharmacotherapy for the CF basic defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–65.

    Article  PubMed  CAS  Google Scholar 

  2. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  PubMed  CAS  Google Scholar 

  3. Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–80.

    Article  PubMed  CAS  Google Scholar 

  4. Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem. 2008;77:701–26.

    Article  PubMed  CAS  Google Scholar 

  5. Kim SJ, Skach WR. Mechanisms of CFTR folding at the endoplasmic reticulum. Front Pharmacol. 2012;3:201.

    PubMed  CAS  Google Scholar 

  6. Poulsen JH, Fischer H, Illek B, et al. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA. 1994;91(12):5340–4.

    Article  PubMed  CAS  Google Scholar 

  7. Tabcharani JA, Linsdell P, Hanrahan JW. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol. 1997;110(4):341–54.

    Article  PubMed  CAS  Google Scholar 

  8. Matsui H, Grubb BR, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95(7):1005–15.

    Article  PubMed  CAS  Google Scholar 

  9. Donaldson SH, Boucher RC. Sodium channels and cystic fibrosis. Chest. 2007;132(5):1631–6.

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Caballero A, Rasmussen JE, Gaillard E, et al. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci USA. 2009;106(27):11412–7.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia MA, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest. 2009;119(9):2613–22.

    Article  PubMed  CAS  Google Scholar 

  12. Gustafsson JK, Ermund A, Ambort D, et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med. 2012;209(7):1263–72.

    Article  PubMed  CAS  Google Scholar 

  13. Pezzulo AA, Tang XX, Hoegger MJ, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–13.

    Article  PubMed  CAS  Google Scholar 

  14. Simmonds NJ, Macneill SJ, Cullinan P, et al. Cystic fibrosis and survival to 40 years: a case-control study. Eur Respir J. 2010;36(6):1277–83.

    Article  PubMed  CAS  Google Scholar 

  15. Hodson ME, Simmonds NJ, Warwick WJ, et al. An international/multicentre report on patients with cystic fibrosis (CF) over the age of 40 years. J Cyst Fibros. 2008;7(6):537–42.

    Article  PubMed  Google Scholar 

  16. George PM, Banya W, Pareek N, et al. Improved survival at low lung function in cystic fibrosis: cohort study from 1990 to 2007. BMJ. 2011;28(342):d1008.

    Article  Google Scholar 

  17. Atkinson TJ. Cystic fibrosis, vector-mediated gene therapy, and relevance of toll-like receptors: a review of problems, progress, and possibilities. Curr Gene Ther. 2008;8(3):201–7.

    Article  PubMed  CAS  Google Scholar 

  18. Oakland M, Sinn PL, McCray PB Jr. Advances in cell and gene-based therapies for cystic fibrosis lung disease. Mol Ther. 2012;20(6):1108–15.

    Article  PubMed  CAS  Google Scholar 

  19. Illek B, Zhang L, Lewis NC, et al. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol. 1999;277(4 Pt 1):C833–9.

    PubMed  CAS  Google Scholar 

  20. Denning GM, Anderson MP, Amara JF, et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992;358(6389):761–4.

    Article  PubMed  CAS  Google Scholar 

  21. Serohijos AW, Hegedus T, Aleksandrov AA, et al. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci USA. 2008;105(9):3256–61.

    Article  PubMed  CAS  Google Scholar 

  22. Vergani P, Lockless SW, Nairn AC, et al. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature. 2005;433(7028):876–80.

    Article  PubMed  CAS  Google Scholar 

  23. Hwang TC, Sheppard DN. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol. 2009;587(Pt 10):2151–61.

    Article  PubMed  CAS  Google Scholar 

  24. Younger JM, Chen L, Ren HY, et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell. 2006;126(3):571–82.

    Article  PubMed  CAS  Google Scholar 

  25. Farinha CM, Amaral MD. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol. 2005;25(12):5242–52.

    Article  PubMed  CAS  Google Scholar 

  26. Penque D, Mendes F, Beck S, et al. Cystic fibrosis F508del patients have apically localized CFTR in a reduced number of airway cells. Lab Invest. 2000;80(6):857–68.

    Article  PubMed  CAS  Google Scholar 

  27. Okiyoneda T, Barrière H, Bagdány M, et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science. 2010;329(5993):805–10.

    Article  PubMed  CAS  Google Scholar 

  28. Lukacs GL, Chang XB, Bear C, et al. The deltaF508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem. 1993;268(29):21592–8.

    PubMed  CAS  Google Scholar 

  29. Sharma M, Pampinella F, Nemes C, et al. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol. 2004;164(6):923–33.

    Article  PubMed  CAS  Google Scholar 

  30. Dalemans W, Barbry P, Champigny G, et al. Altered chloride ion channel kinetics associated with the deltaF508 cystic fibrosis mutation. Nature. 1991;354(6354):526–8.

    Article  PubMed  CAS  Google Scholar 

  31. Drumm ML, Wilkinson DJ, Smit LS, et al. Chloride conductance expressed by deltaF508 and other mutant CFTRs in Xenopus oocytes. Science. 1991;254(5039):1797–9.

    Article  PubMed  CAS  Google Scholar 

  32. Haws CM, Nepomuceno IB, Krouse ME, et al. DeltaF508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am J Physiol. 1996;270(5 Pt 1):C1544–55.

    PubMed  CAS  Google Scholar 

  33. Wang F, Zeltwanger S, Hu S, et al. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels. J Physiol. 2000;1(524 Pt 3):637–48.

    Article  Google Scholar 

  34. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251–4.

    Article  PubMed  CAS  Google Scholar 

  35. Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995;29:777–807.

    Article  PubMed  CAS  Google Scholar 

  36. Haardt M, Benharouga M, Lechardeur D, et al. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem. 1999;274(31):21873–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hwang TC, Wang F, Yang IC, et al. Genistein potentiates wild-type and deltaF508-CFTR channel activity. Am J Physiol. 1997;273(3 Pt 1):C988–98.

    PubMed  CAS  Google Scholar 

  38. Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov. 2009;8(2):153–71.

    Article  PubMed  CAS  Google Scholar 

  39. Zegarra-Moran O, Romio L, Folli C, et al. Correction of G551D-CFTR transport defect in epithelial monolayers by genistein but not by CPX or MPB-07. Br J Pharmacol. 2002;137(4):504–12.

    Article  PubMed  CAS  Google Scholar 

  40. Pedemonte N, Sonawane ND, Taddei A, et al. Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol Pharmacol. 2005;67(5):1797–807.

    Article  PubMed  CAS  Google Scholar 

  41. Dérand R, Bulteau-Pignoux L, Mettey Y, et al. Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation. Am J Physiol. 2001;281(5):C1657–66.

    Google Scholar 

  42. Yang H, Shelat AA, Guy RK, et al. Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J Biol Chem. 2003;278(37):35079–85.

    Article  PubMed  CAS  Google Scholar 

  43. Pedemonte N, Diena T, Caci E, et al. Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations. Mol Pharmacol. 2005;68(6):1736–46.

    PubMed  CAS  Google Scholar 

  44. Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest. 2005;115(9):2564–71.

    Article  PubMed  CAS  Google Scholar 

  45. Norez C, Noel S, Wilke M, et al. Rescue of functional deltaF508-CFTR channels in cystic fibrosis epithelial cells by the alpha-glucosidase inhibitor miglustat. FEBS Lett. 2006;580(8):2081–6.

    Article  PubMed  CAS  Google Scholar 

  46. Carlile GW, Robert R, Zhang D, et al. Correctors of protein trafficking defects identified by a novel high-throughput screening assay. Chembiochem. 2007;8(9):1012–20.

    Article  PubMed  CAS  Google Scholar 

  47. Van Goor F, Hadida S, Grootenhuis PD, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA. 2009;106(44):18825–30.

    Article  PubMed  Google Scholar 

  48. Hutt DM, Herman D, Rodrigues AP, et al. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol. 2010;6(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  49. Van Goor F, Hadida S, Grootenhuis PD, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA. 2011;108(46):18843–8.

    Article  PubMed  Google Scholar 

  50. Carlile GW, Keyzers RA, Teske KA, et al. Correction of F508del-CFTR trafficking by the sponge alkaloid latonduine is modulated by interaction with PARP. Chem Biol. 2012;19(10):1288–99.

    Article  PubMed  CAS  Google Scholar 

  51. Caputo A, Hinzpeter A, Caci E, et al. Mutation-specific potency and efficacy of cystic fibrosis transmembrane conductance regulator chloride channel potentiators. J Pharmacol Exp Ther. 2009;330(3):783–91.

    Article  PubMed  CAS  Google Scholar 

  52. Yu H, Burton B, Huang CJ, et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros. 2012;11(3):237–45.

    Article  PubMed  CAS  Google Scholar 

  53. Pedemonte N, Tomati V, Sondo E, et al. Influence of cell background on pharmacological rescue of mutant CFTR. Am J Physiol Cell Physiol. 2010;298(4):C866–74.

    Article  PubMed  CAS  Google Scholar 

  54. Randell SH, Fulcher ML, O’Neal W, et al. Primary epithelial cell models for cystic fibrosis research. Methods Mol Biol. 2011;742:285–310.

    Article  PubMed  CAS  Google Scholar 

  55. Fulcher ML, Randell SH. Human nasal and tracheo-bronchial respiratory epithelial cell culture. Methods Mol Biol. 2013;945:109–21.

    Article  PubMed  Google Scholar 

  56. Mendoza JL, Schmidt A, Li Q, et al. Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences. Cell. 2012;148(1–2):164–74.

    Article  PubMed  CAS  Google Scholar 

  57. Rabeh WM, Bossard F, Xu H, et al. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell. 2012;148(1–2):150–63.

    Article  PubMed  CAS  Google Scholar 

  58. Roxo-Rosa M, Xu Z, Schmidt A, et al. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Proc Natl Acad Sci USA. 2006;103(47):17891–6.

    Article  PubMed  CAS  Google Scholar 

  59. DeCarvalho AC, Gansheroff LJ, Teem JL. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator ∆F508. J Biol Chem. 2002;277(39):35896–905.

    Article  PubMed  CAS  Google Scholar 

  60. Thibodeau PH, Richardson JM 3rd, Wang W, et al. The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem. 2010;285(46):35825–35.

    Article  PubMed  CAS  Google Scholar 

  61. Grove DE, Rosser MF, Ren HY, et al. Mechanisms for rescue of correctable folding defects in CFTRDelta F508. Mol Biol Cell. 2009;20(18):4059–69.

    Article  PubMed  CAS  Google Scholar 

  62. Accurso FJ, Rowe SM, Clancy JP, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991–2003.

    Article  PubMed  CAS  Google Scholar 

  63. De Boeck K, Derichs N, Fajac I, et al. New clinical diagnostic procedures for cystic fibrosis in Europe. J Cyst Fibros. 2011;10(Suppl 2):S53–66.

    Article  PubMed  Google Scholar 

  64. Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–72.

    Article  PubMed  CAS  Google Scholar 

  65. Flume PA, Liou TG, Borowitz DS, et al. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718–24.

    Article  PubMed  Google Scholar 

  66. Clancy JP, Rowe SM, Accurso FJ, et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax. 2012;67(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  67. Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349(15):1433–41.

    Article  PubMed  CAS  Google Scholar 

  68. Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91.

    Article  PubMed  CAS  Google Scholar 

  69. Sermet-Gaudelus I, Boeck KD, Casimir GJ, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182(10):1262–72.

    Article  PubMed  CAS  Google Scholar 

  70. Wilschanski M, Miller LL, Shoseyov D, et al. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir J. 2011;38(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  71. Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest. 2007;117(3):683–92.

    Article  PubMed  CAS  Google Scholar 

  72. Rowe SM, Sloane P, Tang LP, et al. Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J Mol Med (Berl). 2011;89(11):1149–61.

    Article  CAS  Google Scholar 

  73. Hirsh AJ, Sabater JR, Zamurs A, et al. Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease. J Pharmacol Exp Ther. 2004;311(3):929–38.

    Article  PubMed  CAS  Google Scholar 

  74. Hirsh AJ, Zhang J, Zamurs A, et al. Pharmacological properties of N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N′-4-[4-(2,3-dihydroxypropoxy)phenyl]butyl-guanidine methanesulfonate (552-02), a novel epithelial sodium channel blocker with potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther. 2008;325(1):77–88.

    Article  PubMed  CAS  Google Scholar 

  75. Rowe SM, Reeves G, Hathorne H, et al. Reduced sodium transport with nasal administration of the prostasin inhibitor camostat in cystic fibrosis subjects. Chest. 2013;. doi:10.1378/chest.12-2431.

    Google Scholar 

  76. Ratjen F, Durham T, Navratil T, et al. Long term effects of denufosol tetrasodium in patients with cystic fibrosis. J Cyst Fibros. 2012;11(6):539–49.

    Article  PubMed  CAS  Google Scholar 

  77. Moss RB. Pitfalls of drug development: lessons learned from trials of denufosol in cystic fibrosis. J Pediatr. 2013;162(4):676–80.

    Article  PubMed  Google Scholar 

  78. Yang YD, Cho H, Koo JY, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–5.

    Article  PubMed  CAS  Google Scholar 

  79. Schroeder BC, Cheng T, Jan YN, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134(6):1019–29.

    Article  PubMed  CAS  Google Scholar 

  80. Caputo A, Caci E, Ferrera L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–4.

    Article  PubMed  CAS  Google Scholar 

  81. Scudieri P, Caci E, Bruno S, et al. Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J Physiol. 2012;590(Pt 23):6141–55.

    Article  PubMed  CAS  Google Scholar 

  82. Namkung W, Phuan PW, Verkman AS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem. 2011;286(3):2365–74.

    Article  PubMed  CAS  Google Scholar 

  83. Davies JC, Wainwright CE, Canny GJ, et al. Efficacy and safety of Ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013 (Epub ahead of print).

  84. Boyle MP, Bell S, Konstan M, et al. The investigational CFTR corrector, VX-809 (Lumacaftor) co-administered with the oral potentiator Ivacaftor improved CFTR and lung function in F508del homozygous patients: phase II study results. Pediatr Pulmonol. 2012;47(S35):315.

    Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Luis Galietta has no conflicts of interest that are directly relevant to the content of this report. Thanks to Dr. Anna Capurro for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. V. Galietta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galietta, L.J.V. Managing the Underlying Cause of Cystic Fibrosis: A Future Role for Potentiators and Correctors. Pediatr Drugs 15, 393–402 (2013). https://doi.org/10.1007/s40272-013-0035-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-013-0035-3

Keywords

Navigation