Skip to main content
Log in

Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents

  • Evidence-Based Review
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The adequate management of central nervous system (CNS) infections requires that antimicrobial agents penetrate the blood–brain barrier (BBB) and achieve concentrations in the CNS adequate for eradication of the infecting pathogen. This review details the currently available literature on the pharmacokinetics (PK) of antibacterials in the CNS of children. Clinical trials affirm that the physicochemical properties of a drug remain one of the most important factors dictating penetration of antimicrobial agents into the CNS, irrespective of the population being treated (i.e. small, lipophilic drugs with low protein binding exhibit the best translocation across the BBB). These same physicochemical characteristics determine the primary disposition pathways of the drug, and by extension the magnitude and duration of circulating drug concentrations in the plasma, a second major driving force behind achievable CNS drug concentrations. Notably, these disposition pathways can be expected to change during the normal process of growth and development. Finally, CNS drug penetration is influenced by the nature and extent of the infection (i.e. the presence of meningeal inflammation). Aminoglycosides have poor CNS penetration when administered intravenously. Intrathecal gentamicin has been studied in children with more promising results, often exceeding the minimum inhibitory concentration. There are very limited data with intrathecal tobramycin in children. However, in the few patients that have been studied, the CSF concentrations were highly variable. Penicillins generally have good CNS penetration. Aqueous penicillin G reaches greater concentrations than procaine or benzathine penicillin. Concentrations remain detectable for ≥12 h. Of the aminopenicillins, both ampicillin and parenteral amoxicillin reach adequate CNS concentrations; however, orally administered amoxicillin resulted in much lower concentrations. Nafcillin and piperacillin are the final two penicillins with pediatric data: their penetration is erratic at best. Cephalosporins vary greatly in regard to their CSF penetration. Few first- and second-generation cephalosporins are able to reach higher CSF concentrations. Cefuroxime is the only exception and is usually avoided due to its adverse effects and slower sterilization of the CSF than third-generation agents. Ceftriaxone, cefotaxime, ceftazidime, cefixime and cefepime have been studied in children and are all able to adequately penetrate the CSF. As with penicillins, concentrations are greatest in the presence of meningeal inflammation. Meropenem and imipenem are the only carbapenems with pediatric data. Imipenem reaches higher CSF concentrations; however, meropenem is preferred due to its lower incidence of seizures. Aztreonam has also demonstrated favorable penetration but only one study has been completed in children. Both chloramphenicol and sulfamethoxazole/trimethoprim (cotrimoxazole) penetrate into the CNS well; however, significant toxicities limit their use. The small size and minimal protein binding of fosfomycin contribute to its favorable CNS PK. Although rarely used, it achieves higher concentrations in the presence of inflammation and accumulation is possible. Linezolid reaches high CSF concentrations; however, more frequent dosing might be required in infants due to their increased elimination. Metronidazole also has very limited information but it demonstrated favorable results similar to adult data; CSF concentrations even exceeded plasma concentrations at certain time points. Rifampin (rifampicin) demonstrated good CNS penetration after oral administration. Vancomycin demonstrates poor CNS penetration after intravenous administration. When combined with intraventricular therapy, CNS concentrations are much greater. Of the antituberculosis agents, isoniazid, pyrazinamide and streptomycin have been studied in children. Isoniazid and pyrazinamide have favorable CSF penetration. Streptomycin appears to produce unpredictable CSF levels. No pediatric-specific data are available for clindamycin, daptomycin, macrolides, tetracyclines, and fluoroquinolones. Daptomycin, fluoroquinolones, and tetracyclines have demonstrated favorable CNS penetration in adults; however, data are limited due to their potential pediatric-specific toxicities and newness within the marketplace. Macrolides and clindamycin have demonstrated poor CNS penetration in adults and thus have not been studied in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Somand D, Meurer W. Central nervous system infections. Emerg Med Clin North Am. 2009;27:89–100.

    Article  PubMed  Google Scholar 

  2. Ziai WC, Lewin JJ 3rd. Update in the diagnosis and management of central nervous system infections. Neurol Clin. 2008;26:427–68.

    Article  PubMed  Google Scholar 

  3. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–28.

    Article  PubMed  CAS  Google Scholar 

  4. Overturf GD. Defining bacterial meningitis and other infections of the central nervous system. Pediatr Crit Care Med. 2005;6(Suppl.):S14–8.

    Article  PubMed  Google Scholar 

  5. Sáez-Llorens X. Brain abscess in children. Semin Pediatr Infect Dis. 2003;14(2):108–14.

    Article  PubMed  Google Scholar 

  6. Duhaime AC. Evaluation and management of shunt infections in children with hydrocephalus. Clin Pediatr. 2006;45:705–13.

    Article  Google Scholar 

  7. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

    Article  PubMed  CAS  Google Scholar 

  8. Scheld MW. Drug delivery to the central nervous system. Rev Infect Dis. 1989;11(7):S1669–90.

    Article  PubMed  CAS  Google Scholar 

  9. Andes DR, Craig WA. Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin N Am. 1999;13(3):595–618.

    Article  CAS  Google Scholar 

  10. Nau R, Prange HW, Muth P, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agent Chemother. 1993;37(7):1518–24.

    Article  CAS  Google Scholar 

  11. Chavez-Bueno S, McCracken GH Jr. Bacterial meningitis in children. Pediatr Clin N Am. 2005;52:795–810.

    Article  Google Scholar 

  12. Nagata Y, Kusuhara H, Endou H, et al. Expression and functional characterization of rat organic anion transporter 3 (rOAT3) in the choroid plexus. Mol Pharmacol. 2002;61(5):982–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kikuchi R, Kusuhara H, Sugiyama D, et al. Contribution of organic anion transporter 3 (S/c22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood-brain barrier. J Pharmacol Exp Ther. 2003;306(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  14. Ocheltree SM, Shen H, Hu Y, et al. Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther. 2005;315(1):240–7.

    Article  PubMed  CAS  Google Scholar 

  15. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (p-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86:695–8.

    Article  PubMed  CAS  Google Scholar 

  16. Agunod M, Yamaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis. 1969;14:400–14.

    Article  PubMed  CAS  Google Scholar 

  17. Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42:657–8.

    Article  PubMed  CAS  Google Scholar 

  18. Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr. 1989;115(4):646–51.

    Article  PubMed  CAS  Google Scholar 

  19. Gupta M, Brans YW. Gastric retention in neonates. Pediatrics. 1978;62:26–9.

    PubMed  CAS  Google Scholar 

  20. Heimann G. Enteral absorption and bioavailability in children in relation to age. Eur J Clin Pharmacol. 1980;18(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  21. Poley JR, Dower JC, Owen CA Jr, et al. Bile acids in infants and children. J Lab Clin Med. 1964;63:638–46.

    Google Scholar 

  22. Suchy FJ, Balistreri WF, Heubi JE, et al. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology. 1981;80(5 Pt 1):1037–41.

    PubMed  CAS  Google Scholar 

  23. Kearns GL, Bradley JS, Jacobs RF, et al. Single-dose pharmacokinetics of a pleconaril in neonates. Pediatr Infect Dis J. 2000;19:833–9.

    Article  PubMed  CAS  Google Scholar 

  24. Shankaran S, Kauffman RE. Use of chloramphenicol palmitate in neonates. J Pediatr. 1984;105(1):113–6.

    Article  PubMed  CAS  Google Scholar 

  25. Centers for Disease Control and Prevention (CDC). Infant feeding practices study II. http://www.cdc.gov/ifps/index.htm. Accessed 28 Oct 2010.

  26. Ogihara T, Kano T, Wagatsuma T, et al. Oseltamivir (Tamiflu) is a substrate of peptide transporter 1. Drug Metab Dispos. 2009;37:1676–81.

    Article  PubMed  CAS  Google Scholar 

  27. Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr Scand Suppl. 1983;305:7–11.

    Article  PubMed  CAS  Google Scholar 

  28. Siber GR, Echeverria P, Smith AL, et al. Pharmacokinetics of gentamicin in children and adults. J Infect Dis. 1975;132(6):637–51.

    Article  PubMed  CAS  Google Scholar 

  29. Kearns G, Abdel-Rahman S, Blumer J, et al. Single dose pharmacokinetics of linezolid in infants and children. Pediatr Infect Dis J. 2000;19:1178–84.

    Article  PubMed  CAS  Google Scholar 

  30. Fredholm BB, Rane A, Persson B. Diphenylhydantoin binding to proteins in plasma and its dependence on free fatty acid and bilirubin concentration in dogs and newborn infants. Pediatr Res. 1975;9(1):26–30.

    Article  CAS  Google Scholar 

  31. Windorfer A, Kuenzer W, Urbanek R. The influence of age on the activity of acetylsalicylic acid esterase and protein salicylate binding. Eur J Clin Pharmacol. 1974;7(3):227–31.

    Article  PubMed  CAS  Google Scholar 

  32. Nau H. Valproic acid in the perinatal period: decreased maternal serum protein binding results in fetal accumulation and neonatal displacement of the drug and some metabolites. J Pediatr. 1984;104(4):627–34.

    Article  PubMed  CAS  Google Scholar 

  33. Kanakoudi F, Drossou V, Tzimouli V, et al. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem. 1995;41(4):605–8.

    PubMed  CAS  Google Scholar 

  34. Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104:849–54.

    Article  PubMed  CAS  Google Scholar 

  35. John TR, Moore WM, Jeffries JE, editors. Children are different: developmental physiology. 2nd ed. Columbus: Ross Laboratories; 1978.

    Google Scholar 

  36. Stevens JC, Hines RN, Chungang GU, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307:573–82.

    Article  PubMed  CAS  Google Scholar 

  37. LaCroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247:625–34.

    Article  PubMed  CAS  Google Scholar 

  38. Kearns GL, Jungbluth GL, Abdel-Rahman SM, et al. Pediatric Pharmacology Research Unit Network. Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther. 2003;74(5):413–22.

    Article  PubMed  CAS  Google Scholar 

  39. Martin E, Koup JR, Paravicini U, et al. Pharmacokinetics of ceftriaxone in neonates and infants with meningitis. J Pediatr. 1984;105:475–81.

    Article  PubMed  Google Scholar 

  40. Chalmers JP, Tiller DJ. Effects of treatment on the mortality rate in septicemia. BMJ. 1969;2:338–41.

    Article  PubMed  CAS  Google Scholar 

  41. Craven DE, Kollisch NR, Hsieh CR, et al. Vancomycin treatment of bacteremia caused by oxacillin-resistant Staphylococcus aureus: comparison with beta-lactam antibiotic treatment of bacteremia caused by oxacillin-sensitive Staphylococcus aureus. J Infect Dis. 1983;147:137–43.

    Article  PubMed  CAS  Google Scholar 

  42. Flick MR, Cluff LE. Pseudomonas bacteremia: review of 108 cases. Am J Med. 1976;60:501–8.

    Article  PubMed  CAS  Google Scholar 

  43. Lorian V, Burns L. Predictive value of susceptibility tests for the outcome of antibacterial therapy. J Antimicrob Chemother. 1990;25:175–81.

    Article  PubMed  CAS  Google Scholar 

  44. McCabe WR, Jackson GG. Gram-negative bacteremia: clinical and therapeutic observations. Arch Intern Med. 1962;110:856–64.

    Article  Google Scholar 

  45. Anderson ET, Young LS, Hewitt WL. Simultaneous antibiotic levels in “breakthrough” gram-negative rod bacteremia. Am J Med. 1976;61:493–7.

    Article  PubMed  CAS  Google Scholar 

  46. Bryan CS, Reynolds KL, Brenner ER. Analysis of 1,186 episodes of gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev Infect Dis. 1983;5:629–38.

    Article  PubMed  CAS  Google Scholar 

  47. Freid MA, Vosti KL. The importance of underlying disease in patients with gram-negative bacteremia. Arch Intern Med. 1968;121(5):418–23.

    Article  PubMed  CAS  Google Scholar 

  48. Isenberg HD. Clinical evaluation of laboratory guidance to antibiotic therapy. Health Lab Sci. 1967;4:164–80.

    Google Scholar 

  49. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV: re-evaluation of clinical features and treatment in 612 patients. Am J Med. 1980;68:344–55.

    Article  PubMed  CAS  Google Scholar 

  50. Eagle H, Fleishman R, Levy M. Continuous vs. discontinuous therapy with penicillin: the effect of the interval between injections on therapeutic efficacy. N Engl J Med. 1953;248:481–8.

    Article  PubMed  CAS  Google Scholar 

  51. White CA, Toothaker RD. Influence of ampicillin elimination half-life on in-vitro bactericidal effect. J Antimicrob Chemother. 1985;15(Suppl. A):257–60.

    Article  PubMed  CAS  Google Scholar 

  52. Soriano F, Garcia-Corbeira P, Ponte C, et al. Correlation of pharmacodynamic parameters of five beta-lactam antibiotics with therapeutic efficacies in an animal model. Antimicrob Agents Chemother. 1996;40:2686–90.

    PubMed  CAS  Google Scholar 

  53. Zinner SH, Dudley MN, Gilbert D, et al. Effect of dose and schedule on cefoperazone pharmacodynamics in an in vitro model of infection in a neutropenic host. Am J Med. 1988;85(Suppl. 1A):56–8.

    Article  PubMed  CAS  Google Scholar 

  54. Flückiger U, Segessenmann C, Gerber AU. Integration of pharmacokinetics and pharmacodynamics of imipenem in a human-adapted mouse model. Antimicrob Agents Chemother. 1991;35(9):1905–10.

    Article  PubMed  Google Scholar 

  55. Scaglione F, Demartini G, Dugnani, et al. In vitro comparative dynamics of modified-release clarithromycin and of azithromycin. Chemotherapy. 2000;46:342–52.

    Article  PubMed  CAS  Google Scholar 

  56. Azoulay-Dupuis E, Vallee E, Bedos JP, et al. Prophylactic and therapeutic activities of azithromycin in a mouse model of pneumococcal pneumonia. Antimicrob Agents Chemother. 1991;35:1024–8.

    Article  PubMed  CAS  Google Scholar 

  57. van Ogtrop ML, Andes D, Stamstand TJ, et al. In vivo pharmacodynamic activities of two glycylclines (GAR-936 and WAY 152 288) against various gram positive and gram negative bacteria. Antimicrob Agents Chemother. 2000;44(4):943–9.

    Article  PubMed  Google Scholar 

  58. Löwdin E, Odenholt I, Cars O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and staphylococcus epidermidis. Antimicrob Agents Chemother. 1998;42(10):2739–44.

    PubMed  Google Scholar 

  59. Gustafsson I, Hjelm E, Cars O. In vitro pharmacodynamics of the new ketolides HMR 3004 and HMR 3647 (telithromycin) against Chlamydia pneumoniae. Antimicrob Agents Chemother. 2000;44:1846–9.

    Article  PubMed  CAS  Google Scholar 

  60. Andes D, Van Ogtrop ML, Peng J, et al. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46:3484–9.

    Article  PubMed  CAS  Google Scholar 

  61. Craig WA. Pharmacokinetics/pharmacodynamic parameters: rationale for antibacterial dosing in mice and men. Clin Infect Dis. 1998;26:1–12.

    Article  PubMed  CAS  Google Scholar 

  62. Eagle H, Fleischman R, Musselman AD. The bactericidal action of penicillin in vivo: the participation of the host, and slow recovery of the surviving organisms. Ann Intern Med. 1950;33:544–71.

    Article  PubMed  CAS  Google Scholar 

  63. Jawetz E. Dynamics of the action of penicillin in experimental animals; observations on mice. Arch Med Intern. 1946;77:1–15.

    Article  CAS  Google Scholar 

  64. Andes D, Marchillo K, Lowther J, et al. In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:1187–92.

    Article  PubMed  CAS  Google Scholar 

  65. Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991;35:117–23.

    Article  PubMed  CAS  Google Scholar 

  66. Sörberg M, Hanberger H, Nilsson M, et al. Pharmacodynamic effects of antibiotics and acid pump inhibitors on helicobacter pylori. Antimicrob Agents Chemother. 1997;41(10):2218–23.

    PubMed  Google Scholar 

  67. Vance-Bryan K, Larson TA, Rotschafer JC, et al. Investigation of the early killing of Staphylococcus aureus by daptomycin by using an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1992;36:2334–7.

    Article  PubMed  CAS  Google Scholar 

  68. Daikos GL, Jackson GG, Lolans VT, et al. Adaptive resistance to aminoglycosides antibiotics from first-exposure down-regulation. J Infect Dis. 1990;162(2):414–20.

    Article  PubMed  CAS  Google Scholar 

  69. Leggett JE, Ebert S, Fantin B, et al. Comparative dose-effect relations at several dosing intervals for beta-lactam, aminoglycoside and quinolone antibiotics against gram-negative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis Suppl. 1991;74:179–84.

    Google Scholar 

  70. Moore RD, Smith CR, Lietman PS. The association of aminoglycoside plasma levels with mortality in patients with gram negative bacteremia. J Infect Dis. 1984;149:443–8.

    Article  PubMed  CAS  Google Scholar 

  71. Noone P, Parsons T, Pattison JR, et al. Experience in monitoring gentamicin therapy during treatment of serious gram negative sepsis. BMJ. 1974;1:477–81.

    Article  PubMed  CAS  Google Scholar 

  72. Vogelman B, Gudmundsson S, Leggett J, et al. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988;158:831–47.

    Article  PubMed  CAS  Google Scholar 

  73. Lacy MK, Lu W, Xu X, et al. Pharmacodynamic comparisons of levofloxacin, ciprofloxacin and ampicillin against Streptococcus pneumoniae in an in vitro model of infection. Antimicrob Agents Chemother. 1999;43:672–7.

    PubMed  CAS  Google Scholar 

  74. Andes DR, Craig WA. Pharmacodynamics of fluoroquinolones in experimental models of endocarditis. Clin Infect Dis. 1998;27:47–50.

    Article  PubMed  CAS  Google Scholar 

  75. Fantin B, Leclercq R, Mérle Y, et al. Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus. Antimicrob Agents Chemother. 1995;39(2):400–5.

    Article  PubMed  CAS  Google Scholar 

  76. Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47:2118–24.

    Article  PubMed  CAS  Google Scholar 

  77. Jayaram R, Shandil RK, Gaonkar S, et al. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48:2951–7.

    Article  PubMed  CAS  Google Scholar 

  78. Drusano GL, Preston SL, Hardalo C, et al. Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother. 2001;45:13–22.

    Article  PubMed  CAS  Google Scholar 

  79. Andes D, Marchillo K, Conklin R, et al. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother. 2004;48:137–42.

    Article  PubMed  CAS  Google Scholar 

  80. Andes D, Marchillo K, Stamstad T, et al. In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:1193–9.

    Article  PubMed  CAS  Google Scholar 

  81. Andes D, Marchillo K, Stamstad T, et al. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:3165–9.

    Article  PubMed  CAS  Google Scholar 

  82. Lorian V. Some effects of subinhibitory concentrations of antibiotics on bacteria. Bull N Y Acad Med. 1975;51:1046–55.

    PubMed  CAS  Google Scholar 

  83. Odenholt-Tornqvist I, Lowdin E, Cars O. Pharmacodynamic effects of subinhibitory concentrations of b-lactam antibiotics in vitro. Antimicrob Agents Chemother. 1991;35:1834–9.

    Article  PubMed  CAS  Google Scholar 

  84. Odenholt-Tornqvist I, Lowdin E, Cars O. Postantibiotic sub-MIC effect of vancomycin, roxithromycin, sparfloxacin and amikacin. Antimicrob Agents Chemother. 1992;36:1852–8.

    Article  PubMed  CAS  Google Scholar 

  85. Walterspiel JN, Ashkenazi S, Morrow AL, et al. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infection. 1992;20:25–9.

    Article  PubMed  CAS  Google Scholar 

  86. Yoh M, Yamamoto K, Honda T, et al. Effects of lincomycin and tetracycline on production and properties of enterotoxins of enterotoxigenic Escherichia coli. Infect Immun. 1983;42:778–82.

    PubMed  CAS  Google Scholar 

  87. Yoh M, Frimpong EK, Voravuthikunchai SP, et al. Effect of subinhibitory concentrations of antimicrobial agents (quinolones and macrolide) on the production of verotoxin by enterohemorrhagic Escherichia coli O157: H7. Can J Microbiol. 1999;45:732–9.

    PubMed  CAS  Google Scholar 

  88. Levner M, Weiner FP, Rubin BA. Induction of Escherichia coli and Vibrio cholerae enterotoxins by an inhibitor of protein synthesis. Infect Immun. 1977;15:132–7.

    PubMed  CAS  Google Scholar 

  89. Kernodle DS, McGraw PA, Barg NL, et al. Growth of Staphylococcus aureus with nafcillin in vitro induces alpha-toxin production and increases the lethal activity of sterile broth filtrates in a murine model. J Infect Dis. 1995;172:410–9.

    Article  PubMed  CAS  Google Scholar 

  90. Ohlsen K, Ziebuhr W, Koller KP, et al. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42:2817–23.

    PubMed  CAS  Google Scholar 

  91. Bisognano C, Vaudaux PE, Lew DP, et al. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 1997;41:906–13.

    PubMed  CAS  Google Scholar 

  92. Bisognano C, Vaudaux P, Rohner P, et al. Induction of fibronectin-binding proteins and increased adhesion of quinolone-resistant Staphylococcus aureus by subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1428–37.

    Article  PubMed  CAS  Google Scholar 

  93. Bigger JW. The bactericidal action of penicillin on Staphylococcus pyogenes. Ir J Med Sci. 1944;227:533–68.

    Google Scholar 

  94. Eagle H. The recovery of bacteria from the toxic effects of penicillin. J Clin Invest. 1949;28:832–6.

    Article  PubMed  CAS  Google Scholar 

  95. Craig WA, Gudmundsson S. Postantibiotic effect. In: Lorian V, editor. Antibiotics in laboratory medicine. 4th ed. Baltimore: Williams & Wilkins; 1996. p. 296–329.

    Google Scholar 

  96. Parker RF, Luse S. The action of penicillin on staphylococcus: further observations on the effect of a short exposure. J Bacteriol. 1948;56:75–84.

    PubMed  CAS  Google Scholar 

  97. Schmidt LH, Walley A, Larson RD. The influence of the dosage regimen on the therapeutic activity of penicillin G. J Pharmacol Exp Ther. 1949;96:258–68.

    CAS  Google Scholar 

  98. Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1991;74:63–70.

    Google Scholar 

  99. Hanberger H, Nilsson LE, Maller R, et al. Pharmacodynamics of beta-lactam antibiotics on gram-negative bacteria: Initial killing, morphology and post-antibiotic effect. Scand J Infect Dis Suppl. 1991;74:118–23.

    Google Scholar 

  100. Kuenzi B, Segessenmann C, Gerber AU. Postantibiotic effect of roxithromycin, erythromycin, and clindamycin against selected gram-positive bacteria and Haemophilus influenzae. J Antimicrob Chemother. 1987;20(Suppl. B):39–46.

    Article  PubMed  CAS  Google Scholar 

  101. Isaksson B, Hanberger H, Maller R, et al. The postantibiotic effect of amikacin alone and in combination with piperacillin on gram-negative bacteria. Scand J Infect Dis Suppl. 1991;74:129–32.

    Google Scholar 

  102. Fuursted K. Comparative killing activity and postantibiotic effect of streptomycin combined with ampicillin, ciprofloxacin, imipenem, piperacillin or vancomycin against strains of Streptococcus faecalis and Streptococcus faecium. Chemotherapy. 1988;34:229–34.

    Article  PubMed  CAS  Google Scholar 

  103. Fuursted K. Postexposure factors influencing the duration of postantibiotic effect: significance of temperature, pH, cations, and oxygen tension. Antimicrob Agents Chemother. 1997;41:1693–6.

    PubMed  CAS  Google Scholar 

  104. Gudmundsson A, Erlendsdottir H, Gottfredsson M, et al. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob Agents Chemother. 1991;35:2617–24.

    Article  PubMed  CAS  Google Scholar 

  105. Gudmundsson S, Erlensdottir H, Gottfredsson M, et al. The postantibiotic effect induced by antimicrobial combinations. Scand J Infect Dis Suppl. 1991;74:80–93.

    Google Scholar 

  106. Odenholt-Tornqvist I. Pharmacodynamics of beta-lactam antibiotics: studies on the paradoxical and postantibiotic effects in vitro and in an animal model. Scand J Infect Dis Suppl. 1989;58:1–55.

    PubMed  CAS  Google Scholar 

  107. Holm SE, Tornqvist IO, Cars O. Paradoxical effects of antibiotics. Scand J Infect Dis Suppl. 1991; Suppl. 74: 113–7.

    Google Scholar 

  108. Eagle H, Musselman AD. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentration against certain organisms. J Exp Med. 1948;88:99–131.

    Article  PubMed  CAS  Google Scholar 

  109. Piddock LJ, Walters RN, Diver JM. Correlation of quinolone MIC and inhibition of DNA, RNA, and protein synthesis and induction of the SOS response in Escherichia coli. Antimicrob Agents Chemother. 1990;34:2331–6.

    Article  PubMed  CAS  Google Scholar 

  110. Stratton CW, Liu C, Ratner HB, et al. Bactericidal activity of daptomycin (LY146032) compared with those of ciprofloxacin, vancomycin, and ampicillin against enterococci as determined by kill-kinetic studies. Antimicrob Agents Chemother. 1987;31:1014–6.

    Article  PubMed  CAS  Google Scholar 

  111. Gaillard JL, Silly C, Masne AL, et al. Cerebrospinal fluid penetration of amikacin in children with community-acquired bacterial meningitis. Antimicrob Agents Chemother. 1995;39(1):253–5.

    Article  PubMed  CAS  Google Scholar 

  112. Yogev R, Kolling WM. Intraventricular levels of amikacin after intravenous administration. Antimicrob Agents Chemother. 1981;20(5):583–6.

    Article  PubMed  CAS  Google Scholar 

  113. Allegaert K, Scheers I, Adams E. Cerebrospinal fluid compartmental pharmacokinetics of amikacin in neonates. Antimicrob Agents Chemother. 2008;52(6):1934–9.

    Article  PubMed  CAS  Google Scholar 

  114. Trujillo H, Salgado H, Uribe A, et al. Amikacin concentration in the cerebrospinal fluid of children with acute bacterial meningitis. J Int Med Res. 1979;7:45–51.

    PubMed  CAS  Google Scholar 

  115. Pickering LK, Ericsson CD, Ruiz-Palacious G, et al. Intraventricular and parenteral gentamicin therapy for ventriculitis in children. Am J Dis Child. 1978;132:480–3.

    PubMed  CAS  Google Scholar 

  116. Chang MJ, Escobedo M, Anderson DC, et al. Kanamycin and gentamicin treatment of neonatal sepsis and meningitis. Pediatrics. 1975;56(5):695–9.

    PubMed  CAS  Google Scholar 

  117. Newman RL, Holt RJ. Gentamicin in pediatrics. I: report on intrathecal gentamicin. J Infect Dis. 1971;124(Suppl.):S254–6.

    Article  PubMed  Google Scholar 

  118. Tessin I, Trollfors B, Thiringer K, et al. Concentrations of ceftazidime, tobramycin and ampicillin in the cerebrospinal fluid newborn infants. Eur J Pediatr. 1989;148:679–81.

    Article  PubMed  CAS  Google Scholar 

  119. Masvosva P, Buckingham SC, Einhaus, et al. Intraventricular and intravenous tobramycin with ceftazidime for ventriculitis secondary to pseudomonas aeruginosa. J Pediatr Pharmacol Ther. 2003;8:137–43.

    Google Scholar 

  120. Azimi PH, Janner D, Berne P, et al. Concentrations of procaine and aqueous penicillin in the cerebrospinal fluid of infants treated for congenital syphilis. J Pediatr. 1994;124:649–53.

    Article  PubMed  CAS  Google Scholar 

  121. Bernard B, Tinsley L, Mapp J. Pharmacokinetics of aqueous penicillins in cerebrospinal fluid of neonates [abstract]. Pediatr Res. 1978;12:402.

    Article  Google Scholar 

  122. Speer ME, Mason EO, Scharnberg JT. Cerebrospinal fluid concentrations of aqueous procaine penicillin g in the neonate. Pediatrics. 1981;67(3):387–8.

    PubMed  CAS  Google Scholar 

  123. Speer ME, Taber LH, Clark DB, et al. Cerebrospinal fluid levels of benzathine penicillin G in the neonate. J Pediatr. 1977;91(6):996–7.

    Article  PubMed  CAS  Google Scholar 

  124. Barrett FF, Eardley WA, Yow MD, et al. Ampicillin in the treatment of acute suppurative meningitis. J Pediatr. 1966;69(3):343–53.

    Article  PubMed  CAS  Google Scholar 

  125. Foulds G, McBride TJ, Knirsch AK, et al. Penetration of sulbactam and ampicillin into cerebrospinal fluid of infants and young children with meningitis. Antimicrob Agents Chemother. 1987;31(11):1703–5.

    Article  PubMed  CAS  Google Scholar 

  126. Rodriguez WJ, Khan WN, Puig J, et al. Sulbactam/ampicillin vs. chloramphenicol/ampicillin for the treatment of meningitis in infants and children. Rev Infect Dis. 1986;8(5):S620–9.

    Article  PubMed  Google Scholar 

  127. Craft JC, Feldman WE, Nelson JD. Clinicopharmacological evaluation of amoxicillin and probenecid against bacterial meningitis. Antimicrob Agents Chemother. 1979;16(3):346–52.

    Article  PubMed  CAS  Google Scholar 

  128. Nolan CM, Chalhub EG, Nash DG, et al. Treatment of bacterial meningitis with intravenous amoxicillin. Antimicrob Agents Chemother. 1979;16(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  129. Strausbaugh LJ. Penetration of amoxicillin into the cerebrospinal fluid. Antimicrob Agents Chemother. 1978;14(6):899–902.

    Article  PubMed  CAS  Google Scholar 

  130. Nahata MC, Fan-Harvard P, Kosnik EJ, et al. Pharmacokinetics and cerebrospinal fluid concentration of nafcillin in pediatric patients undergoing cerebrospinal fluid shunt placement. Chemotherapy. 1990;36(2):98–102.

    Article  PubMed  CAS  Google Scholar 

  131. Yogev R, Schultz WE, Rosenman SB. Penetrance of nafcillin into human ventricular fluid: correlation with ventricular pleocytosis and glucose levels. Antimicrob Agents Chemother. 1981;19(4):545–8.

    Article  PubMed  CAS  Google Scholar 

  132. Placek M, Whitelaw A, Want S, et al. Piperacillin in early neonatal infection. Arch Dis Child. 1983;58:1006–9.

    Article  Google Scholar 

  133. Thirumoorthi MC, Asmar BI, Buckley JA, et al. Pharmacokinetics of intravenously administered piperacillin in preadolescent children. J Pediatr. 1983;102(6):941–6.

    Article  PubMed  CAS  Google Scholar 

  134. Kuzemko JA, Walker SR. Cefuroxime plasma and CSF levels in children with meningitis. Arch Dis Child. 1979;54:235–6.

    Article  PubMed  CAS  Google Scholar 

  135. Renlund M, Pettay O. Pharmacokinetics and clinical efficacy of cefuroxime in the newborn period. Proc R Soc Med. 1977;70(9):179–82.

    PubMed  CAS  Google Scholar 

  136. Chadwick EG, Yogev R, Shulman ST, et al. Single-dose ceftriaxone pharmacokinetics in pediatric patients with central nervous system infections. J Pediatr. 1983;103(1):141–5.

    Article  PubMed  CAS  Google Scholar 

  137. Steele RW, Eyre LB, Bradsher RW. Pharmacokinetics of ceftriaxone in pediatric patients with meningitis. Antimicrob Agents Chemother. 1983;23(2):191–4.

    Article  PubMed  CAS  Google Scholar 

  138. Del Rio M, McCracken GH, Nelson JD, et al. Pharmacokinetics and cerebrospinal fluid bactericidal activity of ceftriaxone in the treatment of pediatric patients with bacterial meningitis. Antimicrob Agents Chemother. 1982;22(4):622–7.

    Article  PubMed  Google Scholar 

  139. Goldwater PN. Cefotaxime and ceftriaxone cerebrospinal fluid levels during treatment of bacterial meningitis in children. Int J Antimicrob Agents. 2005;26(5):408–11.

    Article  PubMed  CAS  Google Scholar 

  140. Klugman KP, Friedland IR, Bradley JS. Bactericidal activity against cephalosporin resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother. 1995;39(9):1988–92.

    Article  PubMed  CAS  Google Scholar 

  141. Trang JM, Jacobs RF, Kearns GL, et al. Cefotaxime and desacetylcefotaxime pharmacokinetics in infants and children with meningitis. Antimicrob Agents Chemother. 1985;28(6):791–5.

    Article  PubMed  CAS  Google Scholar 

  142. Asmar BI, Thirumoorthi MC, Buckley JA, et al. Cefotaxime diffusion into cerebrospinal fluid of children with meningitis. Antimicrob Agents Chemother. 1985;28(1):138–40.

    Article  PubMed  CAS  Google Scholar 

  143. Friedland IR, Klugman KP. Cerebrospinal fluid bactericidal activity against cephalosporin resistant Streptococcus pneumoniae in children with meningitis treated with high dosage cefotaxime. Antimicrob Agents Chemother. 1997;41(9):1888–91.

    PubMed  CAS  Google Scholar 

  144. Belohradsky BH, Bruch K, Geiss D, et al. Intravenous cefotaxime in children with bacterial meningitis. Lancet. 1980;1(8159):61–3.

    Article  PubMed  CAS  Google Scholar 

  145. Wells TG, Trang JM, Brown AL, et al. Cefotaxime therapy of bacterial meningitis in children. J Antimicrob Chemother. 1977;14(B):181–9.

    Google Scholar 

  146. Blumer JL, Aronoff SC, Myers CM, et al. Pharmacokinetics and cerebrospinal fluid penetration of ceftazidime in children with meningitis. Dev Pharmacol Ther. 1985;8(4):219–31.

    PubMed  CAS  Google Scholar 

  147. Nahata MC, Kohibrenner VM, Barson WJ. Pharmacokinetics and cerebrospinal fluid concentrations of cefixime in infants and young children. Chemotherapy. 1993;39(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  148. Saez-Llorens X, Castano E, Garcia R, et al. Prospective randomized comparison of cefepime and cefotaxime for treatment of bacterial meningitis in infants and children. Antimicrob Agents Chemother. 1995;39(4):937–40.

    Article  PubMed  CAS  Google Scholar 

  149. Ellis J, Ribera L, Reyes G, et al. Cefepime cerebrospinal fluid concentrations in neonatal bacterial meningitis. Ann Pharmacother. 2007;41:900–1.

    Article  PubMed  Google Scholar 

  150. Odio CM, Puig JR, Feris JM, et al. Prospective, randomized, investigator-blinded study of the efficacy and safety of meropenem vs. cefotaxime therapy in bacterial meningitis in children. Pediatr Infect Dis J. 1999;18(7):581–90.

    Article  PubMed  CAS  Google Scholar 

  151. Wong VK, Wright HT, Ross LA, et al. Imipenem/cilastatin treatment of bacterial meningitis in children. Pediatr Infect Dis J. 1991;10(2):122–5.

    Article  PubMed  CAS  Google Scholar 

  152. Jacobs RF, Kearns GL, Brown AL, et al. Cerebrospinal fluid penetration of imipenem and cilastatin (primaxin) in children with central nervous system infections. Antimicrob Agents Chemother. 1986;29(4):670–4.

    Article  PubMed  CAS  Google Scholar 

  153. Stutman HR, Marks MI, Swabb EA. Single-dose pharmacokinetics of aztreonam in pediatric patients. Antimicrob Agents Chemother. 1984;26(2):196–9.

    Article  PubMed  CAS  Google Scholar 

  154. Friedman CA, Lovejoy FC, Smith AL. Chloramphenicol disposition in infants and children. J Pediatr. 1979;95(6):1071–7.

    Article  PubMed  CAS  Google Scholar 

  155. Kelley RS, Hunt AD, Tashman SG. Studies on the absorption and distribution of chloramphenicol. Pediatrics. 1951;8:362–7.

    Google Scholar 

  156. Stanley TV, Balakrishnan V. Rifampicin in neonatal ventriculitis. Aust Pediatr J. 1982;18:200–1.

    CAS  Google Scholar 

  157. Llorens J, Lobato A, Ola T. The passage of fosfomycin into the cerebrospinal fluid in children’s meningitis. Chemotherapy. 1977;23(Suppl. 1):189–95.

    Article  PubMed  Google Scholar 

  158. Yogev R, Damle B, Levey G, et al. Pharmacokinetics and distribution of linezolid in cerebrospinal fluid in children and adolescents. Pediatr Infect Dis J. 2010;29:827–30.

    Article  PubMed  Google Scholar 

  159. Warner JP, Perkins RL, Cordero L. Metronidazole therapy of anaerobic bacteremia, meningitis and brain abscess. Arch Intern Med. 1979;138:167–9.

    Article  Google Scholar 

  160. Mahanjan M, Rohatigi D, Talwar V, et al. Serum and cerebrospinal fluid concentrations of rifampicin at two dose levels in children with tuberculous meningitis. J Commun Dis. 1997;29(3):269–74.

    Google Scholar 

  161. Ninni A, Della Cava F, Vitale L. La rifampicina nella terapia della meningite tubercolare. Riforma Med. 1971;85:1349–51.

    Google Scholar 

  162. Curci G, Della Cava F, Vitale L. On the distribution between the blood and cerebrospinal fluid of rifamycin AMP [in Italian]. Minerva Med. 1969;60(48):2399–402.

    PubMed  CAS  Google Scholar 

  163. De Raultin de la Roy Y, Hoppeler A, Creusot G, et al. Rifampicin levels in the serum and cerebrospinal fluid in children [in French]. Arch Franç Péd. 1974;31:477–88.

    Google Scholar 

  164. Nahata MC, Fan-Harvard P, Bartkowski HM, et al. Pharmacokinetics, cerebrospinal fluid concentration and safety of intravenous rifampin in pediatric patients undergoing shunt placements. Eur J Clin Pharmacol. 1990;38:515–7.

    Article  PubMed  CAS  Google Scholar 

  165. Ardati KO, Thirumoorthi MC, Dajani AS. Intravenous trimethoprim-sulfamethoxazole in the treatment of serious infections in children. J Pediatr. 1979;95(5 pt 1):801–6.

    PubMed  CAS  Google Scholar 

  166. Jorgenson L, Reiter PD, Freeman JE. Vancomycin disposition and penetration into ventricular fluid of central nervous system following intravenous therapy in patients with cerebrospinal devices. Pediatr Neurosurg. 2007;43:449–55.

    Article  PubMed  Google Scholar 

  167. Fan-Havard P, Nahata MC, Bartkowski MH, et al. Pharmacokinetics and cerebrospinal fluid concentration of vancomycin in pediatric patients undergoing CSF shunt placement. Chemotherapy. 1990;36(2):103–8.

    Article  PubMed  CAS  Google Scholar 

  168. Reiter PD, Doron MW. Vancomycin cerebrospinal fluid concentration after intravenous administration in premature infants. J Perinatol. 1996;16(5):331–4.

    PubMed  CAS  Google Scholar 

  169. Schaad UB, Stoeckel K. Single-dose pharmacokinetics of ceftriaxone in infants and young children. Antimicrob Agents Chemother. 1982;21(2):248–53.

    Article  PubMed  CAS  Google Scholar 

  170. Bafeltowska JJ, Buszman E, Mandat KM, et al. Therapeutic vancomycin monitoring in children with hydrocephalus during treatment of shunt infections. Surg Neurol. 2004;62(5):142–50.

    Article  PubMed  Google Scholar 

  171. Nava-Ocampo AA, Mojica-Madera JA, Villanueva-Garcia D, et al. Antimicrobial therapy and local toxicity of intraventricular administration of vancomycin in a neonate with ventriculitis. Ther Drug Monit. 2006;28:474–6.

    Article  PubMed  Google Scholar 

  172. Pau AK, Smego RA, Fisher MA. Intraventricular vancomycin: observations of tolerance and pharmacokinetics in two infants with ventricular shunt infections. Pediatr Infect Dis. 1986;5(1):93–6.

    Article  PubMed  CAS  Google Scholar 

  173. Pellegrino ED, Petrik FG, Horton R. The treatment of tuberculous meningitis in infants with streptomycin and isonicotinic acid hydrazide (isoniazid): a preliminary report of six patients under the age of two years treated without intrathecal medication. Dis Chest. 1954;26:146–65.

    Article  PubMed  CAS  Google Scholar 

  174. Donald PR, Gent WL, Seifart HI, et al. Cerebrospinal fluid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. Pediatrics. 1992;89(2):247–50.

    PubMed  CAS  Google Scholar 

  175. Donald PR, Seifart H. Cerebrospinal fluid pyrazinamide concentration in children with tuberculous meningitis. Pediatr Infec Dis J. 1988;7:469–71.

    Article  CAS  Google Scholar 

  176. Smith AL, Daum RS, Siber GR, et al. Gentamicin penetration into cerebrospinal fluid in experimental Haemophilis influenza meningitis. Antimicrob Agents Chemother. 1988;32(7):1034–9.

    Article  PubMed  CAS  Google Scholar 

  177. Kinsman SL, Johnston MV. Hydrocephalus. In: Kliegman RM, Stanton BF, St. Geme JW, et al., editors. Nelson textbook of pediatrics. Philadelphia: Saunders; 2011. p. 2008–11.

    Google Scholar 

  178. Goldstein SL, Kaplan SL, Feigin RD. Penicillin update. Pediatr Rev. 1995;16:83–90.

    Article  PubMed  CAS  Google Scholar 

  179. Dacey RG, Sande MA. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicro Agents Chemother. 1974;6(4):437–41.

    Article  CAS  Google Scholar 

  180. Acar JF, Goldstein FW, Kitzis MD. Susceptibility survey of piperacillin alone and in the presence of tazobactam. J Antimicrob Chemother. 1993;31(Suppl. A):23–8.

    Article  PubMed  CAS  Google Scholar 

  181. Nau R, Kinzig Schippers MK, Sörgel F, et al. Kinetics of piperacillin and tazobactam in ventricular cerebrospinal fluid of hydrocephalic patients. Antimicrob Agents Chemother. 1997;41(5):987–91.

    PubMed  CAS  Google Scholar 

  182. Lutsar I, Friedland IR. Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin Pharmacokinet. 2000;39(5):335–43.

    Article  PubMed  CAS  Google Scholar 

  183. Schaad UB, Suter S, Gianella-Borradori A, et al. A comparison of ceftriaxone and cefuroxime for the treatment of bacterial meningitis in children. N Engl J Med. 1990;322(3):141–7.

    Article  PubMed  CAS  Google Scholar 

  184. Blumer JL. Pharmacokinetic determinants of carbapenem therapy in neonates and children. Pediatr Infect Dis J. 1996;15(8):733–7.

    Article  PubMed  CAS  Google Scholar 

  185. Singh J, Burr B, Stringham D, et al. Commonly used antibacterial and antifungal agents for hospitalized pediatric patients: implications for therapy with an emphasis on clinical pharmacokinetics. Pediatric Drugs. 2001;3(10):733–61.

    Article  PubMed  CAS  Google Scholar 

  186. Wiseman LR, Wagstaff AJ, Brogden RN, et al. Meropenem: a review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1995;68(4):163–4.

    CAS  Google Scholar 

  187. Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004;29(8):284–8.

    Article  Google Scholar 

  188. Gatti G, Malena M, Casazza R, et al. Penetration of clindamycin and its metabolite n-demethylclindamycin into cerebrospinal fluid following intravenous infusion of clindamycin phosphate in patients with AIDS. Antimicrob Agents Chemother. 1998;42(11):3014–7.

    PubMed  CAS  Google Scholar 

  189. Picardi JL, Lewis PH, Tan JS, et al. Clindamycin concentrations in the central nervous system of primates before and after head trauma. J Neurosurg. 1975;43:717–20.

    Article  PubMed  CAS  Google Scholar 

  190. Lee DH, Palermo B, Chowdhury M. Successful treatment of methicillin-resistance Staphylococcus aureus meningitis with daptomycin. Clin Infect Dis. 2008;47:588–90.

    Article  PubMed  Google Scholar 

  191. Riser MS, Bland CM, Rudisill CN, et al. Cerebrospinal fluid penetration of high-dose daptomycin in suspected staphylococcus aureus meningitis. Ann Pharmacother. 2010;44(11):1832–5.

    Article  PubMed  Google Scholar 

  192. Gerber P, Stucki A, Acosta F, et al. Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J Antimicrob Chemother. 2006;57:720–3.

    Article  PubMed  CAS  Google Scholar 

  193. Kühnen E, Pfeifer G, Frenkel C. Penetration of fosfomycin into cerebrospinal fluid across non-inflamed and inflamed meninges. Infection. 1987;15(6):422–4.

    Article  PubMed  Google Scholar 

  194. Levaquin® (levofloxacin) film-coated tablets [package insert]. Titusville: Janssen Pharmaceuticals, Inc.; 2011.

  195. Scotton PG, Giobbia M, Baraldo M, et al. Cerebrospinal fluid penetration of levofloxacin in patients with spontaneous acute bacterial meningitis. Clin Infect Dis. 2001;33:e109–11.

    Article  PubMed  CAS  Google Scholar 

  196. Ciccotelli W, Poutanen S, Morris S, et al. A new twist on an old problem: a case of pediatric meningitis caused by multidrug-resistant Streptococcus pneumoniae serotype 19A. Can Commun Dis Rep. 2008;34(11):1–6.

    PubMed  CAS  Google Scholar 

  197. Esposito S, Tagliabue C, Bosis S, et al. Levofloxacin for the treatment of mycoplasma pneumonia-associated meningoencephalitis in childhood. Int J Antimicrob Agents. 2011;37(5):472–5.

    Article  PubMed  CAS  Google Scholar 

  198. Milstone AM, Dick J, Carson B, et al. Cerebrospinal fluid penetration and bacteriostatic activity of linezolid against Enterococcus faecalis in a child with a ventriculoperitoneal shunt infection. Pediatr Neurosurg. 2007;43(5):406–9.

    Article  PubMed  Google Scholar 

  199. Yilmaz A, Dalgic N, Müslüman M, et al. Linezolid treatment of shunt-related cerebrospinal fluid infections in children. J Neurosurg Pediatrics. 2010;5:443–8.

    Article  Google Scholar 

  200. Jaruratanasirikul A, Hortiwakul R, Tantisarasart T, et al. Distribution of azithromycin into brain tissue, cerebrospinal fluid and aqueous humor of the eye. Antimicrob Agents Chemother. 1996;40(3):825–6.

    PubMed  CAS  Google Scholar 

  201. Jokipii AM, Myliyia VV, Hokkanen E, et al. Penetration of the blood brain barrier by metronidazole and tinidazole. J Antimicrob Chemother. 1977;3(3):239–45.

    Article  PubMed  CAS  Google Scholar 

  202. Jokipii AM, Jokipii L. Cerebrospinal fluid concentrations of metronidazole, tinadole and orindazole in rabbits. Infection. 1980;8(3):101–3.

    Article  PubMed  CAS  Google Scholar 

  203. Kusumi RK, Plouffe JF, Wyatt RH, et al. Central nervous system toxicity associated with metronidazole therapy. Ann Intern Med. 1980;93(1):59–60.

    Article  PubMed  CAS  Google Scholar 

  204. Ralph ED, Clarke JT, Libke RD, et al. Pharmacokinetics of metronidazole as determined by bioassay. Antimicrob Agents Chemother. 1974;6(6):691–6.

    Article  PubMed  CAS  Google Scholar 

  205. Asmar BI, Magbool S, Dahant AS. Hematologic abnormalities after oral trimethoprim-sulfamethoxazole therapy in children. Am J Dis Child. 1981;135(12):1100–3.

    PubMed  CAS  Google Scholar 

  206. Lewin EB, Klein JO, Finland M. Trimethoprim-sulfamethoxazole: absorption, excretion, and toxicity in six children. J Infect Dis. 1973;128(Suppl.):618–21.

    Article  PubMed  Google Scholar 

  207. Shwachman H, Fekete E, Kulczycki LL, et al. The effect of long-term antibiotic therapy in a patient with cystic fibrosis of the pancreas. Antibiot Annu. 1958;59:692–9.

    Google Scholar 

  208. Wallman IS, Hilton HB. Teeth pigmented by tetracycline. Lancet. 1962;1:827–9.

    Article  PubMed  CAS  Google Scholar 

  209. Porter PJ, Sweeney EA, Golan H, et al. Controlled study of the effect of prenatal tetracycline on primary dentition. Antimicrob Agents Chemother. 1965;5:668–71.

    PubMed  CAS  Google Scholar 

  210. Yim CW, Flynn NM, Fitzgerald FT. Penetration of oral doxycycline into the cerebrospinal fluid of patients with latent or neurosyphilis. Antimicrob Agents Chemother. 1985;28(2):347–8.

    Article  PubMed  CAS  Google Scholar 

  211. Dotevall L, Hagberg L. Penetration of doxycycline into cerebrospinal fluid in patients treated for suspected Lyme neuroborreliosis. Antimicrob Agents Chemother. 1989;33(7):1078–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Abdel-Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullins, A.K., Abdel-Rahman, S.M. Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents. Pediatr Drugs 15, 93–117 (2013). https://doi.org/10.1007/s40272-013-0017-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-013-0017-5

Keywords

Navigation