Skip to main content

Advertisement

Log in

Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease is the second most common neurodegenerative movement disorder; however, its etiology remains elusive. Nevertheless, in vivo observations have concluded that oxidative stress is one of the most common causes in the pathogenesis of Parkinson’s disease. It is known that mitochondria play a crucial role in reactive oxygen species-mediated pathways, and several gene products that associate with mitochondrial function are the subject of Parkinson’s disease research. The PTEN-induced kinase 1 (PINK1) protects cells from mitochondrial dysfunction and is linked to the autosomal recessive familial form of the disease. PINK1 is a key player in many signaling pathways engaged in mitophagy, apoptosis, or microglial inflammatory response and is induced by oxidative stress. Several proteins participate in mitochondrial networks, and they are associated with PINK1. The E3 ubiquitin ligase Parkin, the protease presenilin-associated rhomboid-like serine protease, the tyrosine kinase c-Abl, the protein kinase MARK2, the protease HtrA2, and the tumor necrosis factor receptor-associated protein 1 (TRAP1) provide different steps of control in protection against oxidative stress. Furthermore, environmental toxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have been identified as contributors to parkinsonism by increasing oxidative stress in dopaminergic neurons. The present review discusses the mechanisms and effects of oxidative stress, the emerging concept of the impact of environmental toxins, and a possible neuroprotective role of the antioxidant astaxanthin in various neurodegenerative disorders with particular emphasis in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIMP2:

Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2

AMPA:

Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

α-syn:

Alpha synuclein

ATX:

3,3′-Dihydroxy-β,β-carotene-4,4′-dioneastaxanthin

Bcl-2:

B cell leukemia-2

CSF:

Cerebrospinal fluid

CNS:

Central nervous system

Cyt c:

Cytochrome c

DA:

Dopamine

DAT:

Dopamine transporter

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FBP-1:

Fructose-1,6-bisphosphatase 1

GSH:

Glutathione

HAX1:

HS1-associated protein X-1

Hsp:

Heat-shock protein

HtrA2:

High-temperature requirement A2 protease

IκB:

Inhibitory kappa B

IL:

Interleukin

IMM:

Inner mitochondrial membrane

IMS:

Intermembrane space

JNK:

c-Jun N-terminal kinase

LBs:

Lewy bodies

LDH:

Lactate dehydrogenase

LNs:

Lewy neurites

MAPK:

Mitogen-activated protein kinase

MARK2:

Microtubule affinity-regulating kinase 2

MN:

Maneb

MPP+:

4-Phenyl-2,3-dihydropyridinium ion

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mtDNA:

Mitochondrial DNA

NF-κB:

Nuclear factor kappa B

NM:

Neuromelanin

NMDA:

N-methyl-d-aspartate

NMDAR:

NMDA receptor

NOS:

Nitric oxide synthase

NPCs:

Neuronal progenitor cells

OMM:

Outer mitochondrial membrane

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

PARL:

Presenilin-associated rhomboid-like serine protease

p-α-syn:

Phosphorylated α-syn

PDZ:

Postsynaptic density protein (PSD95)/Drosophila disc large tumor suppressor (Dlg1)/zonula occludens-1 protein (Zo-1)

PI3K:

Phosphoinositide-3 kinase

PINK1:

PTEN-induced kinase 1

PKCδ:

Protein kinase C delta

PQ:

Paraquat

SAPK:

Stress-activated protein kinase

SN:

Substantia nigra

SNpc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

STAT:

Signal transducer and activator of transcription

SVZ:

Subventricular zone

TCF/LEF:

T-cell factor/lymphoid enhancer-binding factor

TNF-α:

Tumor necrosis factor alpha

TRAP1:

TNF receptor-associated protein

UPS:

Ubiquitin–proteasome system

∆Ψm:

Mitochondrial membrane potential

References

  • Akundi, R. S., et al. (2011). Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE, 6(1), e16038.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alam, Z. I., et al. (1997). Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. Journal of Neurochemistry, 69(3), 1196–1203.

    CAS  PubMed  Google Scholar 

  • Alnemri, E. S. (2007). HtrA2 and Parkinson’s disease: Think PINK? Nature Cell Biology, 9(11), 1227–1229.

    CAS  PubMed  Google Scholar 

  • Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10(Suppl), S18–S25.

    PubMed  Google Scholar 

  • Arduino, D. M., Esteves, A. R., & Cardoso, S. M. (2013). Mitochondria drive autophagy pathology via microtubule disassembly: A new hypothesis for Parkinson disease. Autophagy, 9(1), 112–114.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 3(3), 205–214.

    CAS  PubMed  Google Scholar 

  • Beal, M. F. (2003). Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Annals of the New York Academy of Sciences, 991, 120–131.

    CAS  PubMed  Google Scholar 

  • Blum, D., et al. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Progress in Neurobiology, 65(2), 135–172.

    CAS  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (2000). Pathoanatomy of Parkinson’s disease. Journal of Neurology, 247(Suppl 2), II3–II10.

    Google Scholar 

  • Bueler, H. (2009). Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Experimental Neurology, 218(2), 235–246.

    PubMed  Google Scholar 

  • Busse, W. W., & Lemanske, R. F., Jr. (2001). Asthma. New England Journal of Medicine, 344(5), 350–362.

    CAS  PubMed  Google Scholar 

  • Camps, M., et al. (2005). Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nature Medicine, 11(9), 936–943.

    CAS  PubMed  Google Scholar 

  • Cao, C., et al. (2001). The ARG tyrosine kinase interacts with Siva-1 in the apoptotic response to oxidative stress. Journal of Biological Chemistry, 276(15), 11465–11468.

    CAS  PubMed  Google Scholar 

  • Chan, K. C., Mong, M. C., & Yin, M. C. (2009). Antioxidative and anti-inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12 cells. Journal of Food Science, 74(7), H225–H231.

    CAS  PubMed  Google Scholar 

  • Ciccone, S., et al. (2013). Parkinson’s disease: A complex interplay of mitochondrial DNA alterations and oxidative stress. International Journal of Molecular Sciences, 14(2), 2388–2409.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cilenti, L., et al. (2004). Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. Journal of Biological Chemistry, 279(48), 50295–50301.

    CAS  PubMed  Google Scholar 

  • Clausen, T., et al. (2011). HTRA proteases: Regulated proteolysis in protein quality control. Nature Reviews Molecular Cell Biology, 12, 152–162.

    CAS  PubMed  Google Scholar 

  • Constance, J., Despres, S., Nishida, A., & Lim, C. (2012). Selective targeting of c-Abl via a cryptic mitochondrial targeting signal activated by cellular redox status in leukemic and breast cancer cells. Pharmaceutical Research, 29(8), 2317–2328.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cookson, M. R., & Bandmann, O. (2010). Parkinson’s disease: Insights from pathways. Human Molecular Genetics, 19(R1), R21–R27.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corti, O., Lesage, S., & Brice, A. (2011). What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiological Reviews, 91(4), 1161–1218.

    CAS  PubMed  Google Scholar 

  • Costa, A. C., Loh, S. H. Y., & Martins, M. (2013). Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease. Cell Death Disease, 4, e467; doi:10.1038/cddis.2012.205.

  • Crabtree, D. M., & Zhang, J. (2012). Genetically engineered mouse models of Parkinson’s disease. Brain Research Bulletin, 88(1), 13–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crosiers, D., et al. (2011). Parkinson disease: Insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy, 42(2), 131–141.

    CAS  PubMed  Google Scholar 

  • Cui, K., et al. (2004). Role of oxidative stress in neurodegeneration: Recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28(5), 771–799.

    CAS  PubMed  Google Scholar 

  • Dalle-Donne, I., et al. (2003). Protein carbonylation in human diseases. Trends in Molecular Medicine, 9(4), 169–176.

    CAS  PubMed  Google Scholar 

  • Dawson, T. M., Ko, H. S., & Dawson, V. L. (2010). Genetic animal models of Parkinson’s disease. Neuron, 66(5), 646–661.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deas, E., Plun-Favreau, H., & Wood, N. W. (2009). PINK1 function in health and disease. EMBO Mol Med, 1(3), 152–165.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deas, E., et al. (2011). PINK1 cleavage at position A103 by the mitochondrial protease PARL. Human Molecular Genetics, 20(5), 867–879.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito, E., et al. (2002). A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiology of Aging, 23(5), 719–735.

    CAS  PubMed  Google Scholar 

  • Feng, L. R., & Maguire-Zeiss, K. A. (2010). Gene therapy in Parkinson’s disease: Rationale and current status. CNS Drugs, 24(3), 177–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara, H., et al. (2002). Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4(2), 160–164.

    CAS  PubMed  Google Scholar 

  • Gao, H. M., et al. (2008). Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. Journal of Neuroscience, 28(30), 7687–7698.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2001). Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40(8), 959–975.

    CAS  PubMed  Google Scholar 

  • Gollamudi, S., et al. (2012). Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE, 7(5), e36191.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonfloni, S., et al. (2012). Oxidative stress, DNA damage, and c-Abl signaling: At the crossroad in neurodegenerative diseases? International Journal of Cell Biology, 2012, 683097.

    PubMed Central  PubMed  Google Scholar 

  • Graybiel, A. M. (2005). The basal ganglia: Learning new tricks and loving it. Current Opinion in Neurobiology, 15(6), 638–644.

    CAS  PubMed  Google Scholar 

  • Greene, A. W., et al. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Reports, 13(4), 378–385.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu, G. J., et al. (2013). Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. Journal of Alzheimer’s Disease, 33(3), 699–713.

    CAS  PubMed  Google Scholar 

  • Guzman, J. N., et al. (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 468(7324), 696–700.

    CAS  PubMed  Google Scholar 

  • Hald, A., & Lotharius, J. (2005). Oxidative stress and inflammation in Parkinson’s disease: Is there a causal link? Experimental Neurology, 193(2), 279–290.

    CAS  PubMed  Google Scholar 

  • Harish, G., et al. (2010). Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson’s disease. Bioorganic & Medicinal Chemistry, 18(7), 2631–2638.

    CAS  Google Scholar 

  • Heeman, B., et al. (2011). Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. Journal of Cell Science, 24(Pt 7), 1115–1125.

    Google Scholar 

  • Henchcliffe, C., & Beal, M. F. (2008). Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature Clinical Practice Neurology, 4(11), 600–609.

    CAS  PubMed  Google Scholar 

  • Hirsch, E. C., & Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurology, 8(4), 382–397.

    CAS  PubMed  Google Scholar 

  • Horowitz, M. P., & Greenamyre, J. T. (2010). Gene-environment interactions in Parkinson’s disease: The importance of animal modeling. Clinical Pharmacology and Therapeutics, 88(4), 467–474.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ilic, T., et al. (1998). Oxidative stress and Parkinson’s disease. Vojnosanitetski Pregled., 55(5), 463–468.

    CAS  Google Scholar 

  • Imam, S. Z., et al. (2011). Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: Implications for Parkinson’s disease. Journal of Neuroscience, 31(1), 157–163.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inestrosa, N. C., & Arenas, E. (2010). Emerging roles of Wnts in the adult nervous system. Nature Reviews Neuroscience, 11(2), 77–86.

    CAS  PubMed  Google Scholar 

  • Jenner, P. (2003). Oxidative stress in Parkinson’s disease. Annals of Neurology, 53(Suppl 3), S26–S36.

    CAS  PubMed  Google Scholar 

  • Jeong, H. K., et al. (2010). Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury. PLoS ONE, 10, e13756.

    Google Scholar 

  • Ji, K. A., et al. (2007). Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia, 55(15), 1577–1588.

    PubMed  Google Scholar 

  • Johnson, K. A., Conn, P. J., & Niswender, C. M. (2009). Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS & Neurological Disorders: Drug Targets, 8(6), 475–491.

    CAS  Google Scholar 

  • Jones, J. M., et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature, 425(6959), 721–727.

    CAS  PubMed  Google Scholar 

  • Kanthasamy, A. G., et al. (2003). Proteolytic activation of proapoptotic kinase PKCdelta is regulated by overexpression of Bcl-2: Implications for oxidative stress and environmental factors in Parkinson’s disease. Annals of the New York Academy of Sciences, 1010, 683–686.

    CAS  PubMed  Google Scholar 

  • Kim, H. et al. (2011). Downregulation of Wnt/beta-catenin signaling causes degeneration of hippocampal neurons in vivo. Neurobiology of Aging, 32(12), 2316 e1–e15.

    Google Scholar 

  • Kim, J., et al. (2013). PINK1 deficiency enhances inflammatory cytokine release from acutely prepared brain slices. Experimental Neurobiology, 22(1), 38–44.

    PubMed Central  PubMed  Google Scholar 

  • Ko, H. S., et al. (2010). Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proceedings of National Academic Science USA, 107(38), 16691–16696.

    CAS  Google Scholar 

  • Kumar, K. R., Djarmati-Westenberger, A., & Grunewald, A. (2011). Genetics of Parkinson’s disease. Seminars in Neurology, 31(5), 433–440.

    PubMed  Google Scholar 

  • Kurkowska-Jastrzebska, I., et al. (2004). Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. International Immunopharmacology, 4(10–11), 1307–1318.

    CAS  PubMed  Google Scholar 

  • Kuwabara, T., et al. (2009). Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature Neuroscience, 12(9), 1097–1105.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzuhara, S., et al. (1988). Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathologica, 75(4), 345–353.

    CAS  PubMed  Google Scholar 

  • L’Episcopo, F., et al. (2010). Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS & Neurological Disorders: Drug Targets, 9(3), 349–372.

    Google Scholar 

  • L’Episcopo, F., et al. (2011a). Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiology of Diseases, 41(2), 508–527.

    Google Scholar 

  • L’Episcopo, F., et al. (2011b). A Wnt1 regulated Frizzled-1/beta-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration, 6, 49.

    PubMed Central  PubMed  Google Scholar 

  • L’Episcopo, F., et al. (2012). Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/beta-catenin signaling pathways: Functional consequences for neuroprotection and repair. Journal of Neuroscience, 32(6), 2062–2085.

    PubMed Central  PubMed  Google Scholar 

  • Langston, J. W., et al. (1984). 1-Methyl-4-phenylpyridinium ion (MPP +): Identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neuroscience Letters, 48(1), 87–92.

    CAS  PubMed  Google Scholar 

  • Lesage, S., & Brice, A. (2012). Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism & Related Disorders, 18(Suppl 1), S66–S70.

    Google Scholar 

  • Li, W., et al. (2002). Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Natural Structural Biology, 9(6), 436–441.

    CAS  Google Scholar 

  • Li, B., et al. (2010a). Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases. Cell Death and Differentiation, 17, 1773–1784.

    CAS  PubMed  Google Scholar 

  • Li, X., et al. (2010b). Tetrahydroxystilbene glucoside attenuates MPP + -induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation. Neuroscience Letters, 483(1), 1–5.

    CAS  PubMed  Google Scholar 

  • Liu, X., et al. (2009). Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Research, 1254, 18–27.

    CAS  PubMed  Google Scholar 

  • Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.

    CAS  PubMed  Google Scholar 

  • Lotharius, J., & Brundin, P. (2002). Pathogenesis of Parkinson’s disease: Dopamine, vesicles and alpha-synuclein. Nature Reviews Neuroscience, 3(12), 932–942.

    CAS  PubMed  Google Scholar 

  • Lu, W., et al. (2007). The phosphorylation of tyrosine 332 is necessary for the caspase 3-dependent cleavage of PKCdelta and the regulation of cell apoptosis. Cellular Signalling, 19(10), 2165–2173.

    CAS  PubMed  Google Scholar 

  • Marchetti, B., & Abbracchio, M. P. (2005). To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends in Pharmacological Sciences, 26(10), 517–525.

    CAS  PubMed  Google Scholar 

  • Marongiu, R., et al. (2009). Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. Journal of Neurochemistry, 108(6), 1561–1574.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins, L. M., et al. (2004). Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Molecular and Cellular Biology, 24(22), 9848–9862.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matenia, D., et al. (2012). Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: Effects on mitochondrial transport. Journal of Biological Chemistry, 287(11), 8174–8186.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuda, S., Kitagishi, Y., & Kobayashi, M. (2013). Function and characteristics of PINK1 in mitochondria. Oxidative Medicine and Cellular Longevity, 2013, 601587.

    PubMed Central  PubMed  Google Scholar 

  • Medina, E. A., Morris, I. R., & Berton, M. T. (2010). Phosphatidylinositol 3-kinase activation attenuates the TLR2-mediated macrophage proinflammatory cytokine response to Francisella tularensis live vaccine strain. The Journal of Immunology, 185(12), 7562–7572.

    CAS  PubMed  Google Scholar 

  • Meissner, C., et al. (2011). The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. Journal of Neurochemistry, 117(5), 856–867.

    CAS  PubMed  Google Scholar 

  • Min, K. J., et al. (2012). Spatial and temporal correlation in progressive degeneration of neurons and astrocytes in contusion-induced spinal cord injury. Journal of Neuroinflammation, 9, 100.

    PubMed Central  PubMed  Google Scholar 

  • Mosharov, E. V., et al. (2009). Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron, 62(2), 218–229.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munji, R. N., et al. (2011). Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. Journal of Neuroscience, 31(5), 1676–1687.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murata, H., et al. (2011). A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1. Activation of Akt via mTORC2. Journal of Biological Chemistry, 286(9), 7182–7189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mythri, R. B., et al. (2011). Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochemical Research, 36(8), 1452–1463.

    CAS  PubMed  Google Scholar 

  • Mytilineou, C., Kramer, B. C., & Yabut, J. A. (2002). Glutathione depletion and oxidative stress. Parkinsonism & Related Disorders, 8(6), 385–387.

    Google Scholar 

  • Naguib, Y. M. (2000). Antioxidant activities of astaxanthin and related carotenoids. Journal of Agriculture and Food Chemistry, 48(4), 1150–1154.

    CAS  Google Scholar 

  • Nakamura, T., & Lipton, S. A. (2010). Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: Possible pharmacological strategies. Cell Calcium, 47(2), 190–197.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura, T., & Lipton, S. A. (2011). Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death and Differentiation, 18(9), 1478–1486.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendra, D. P., et al. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology, 8(1), e1000298.

    PubMed Central  PubMed  Google Scholar 

  • Nicholls, D. G. (2010). Mitochondrial ion circuits. Essays in Biochemistry, 47, 25–35.

    CAS  PubMed  Google Scholar 

  • Novak, I. (2012). Mitophagy: A complex mechanism of mitochondrial removal. Antioxidants & Redox Signaling, 17(5), 794–802.

    CAS  Google Scholar 

  • Okatsu, K., et al. (2012). PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communications, 3, 1016.

    PubMed Central  PubMed  Google Scholar 

  • Olanow, C. W., & McNaught, K. S. (2006). Ubiquitin–proteasome system and Parkinson’s disease. Movement Disorders, 21(11), 1806–1823.

    PubMed  Google Scholar 

  • Pearce, R. K., et al. (1997). Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. Journal of Neural Transmission, 104(6–7), 661–677.

    CAS  PubMed  Google Scholar 

  • Plun-Favreau, H., et al. (2007). The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nature Cell Biology, 9(11), 1243–1252.

    CAS  PubMed  Google Scholar 

  • Plun-Favreau, H., et al. (2008). What have PINK1 and HtrA2 genes told us about the role of mitochondria in Parkinson’s disease? Annals of the New York Academy of Sciences, 1147, 30–36.

    CAS  PubMed  Google Scholar 

  • Prakash, N., et al. (2006). A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development, 133(1), 89–98.

    CAS  PubMed  Google Scholar 

  • Pridgeon, J. W., et al. (2007). PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biology, 5(7), e172.

    PubMed Central  PubMed  Google Scholar 

  • Puopolo, M., Raviola, E., & Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. Journal of Neuroscience, 27(3), 645–656.

    CAS  PubMed  Google Scholar 

  • Pyo, H., et al. (1998). Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia. NeuroReport, 9(5), 871–874.

    CAS  PubMed  Google Scholar 

  • Qi, X., & Mochly-Rosen, D. (2008). The PKCdelta-Abl complex communicates ER stress to the mitochondria—an essential step in subsequent apoptosis. Journal of Cell Science, 121(6), 804–813.

    CAS  PubMed  Google Scholar 

  • Reichmann, H. (2011). View point: Etiology in Parkinson’s disease. Dual hit or spreading intoxication. Journal of the Neurological Sciences, 310(1–2), 9–11.

    PubMed  Google Scholar 

  • Roberts, R. A., et al. (2010). Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology, 276(2), 85–94.

    CAS  PubMed  Google Scholar 

  • Rochet, J. C., Hay, B. A., & Guo, M. (2012). Molecular insights into Parkinson’s disease. Progress in Molecular Biology and Translational Science, 107, 125–188.

    CAS  PubMed  Google Scholar 

  • Ryu, J., et al. (2000). Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. Journal of Biological Chemistry, 275(39), 29955–29959.

    CAS  PubMed  Google Scholar 

  • Selley, M. L. (1998). (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson’s disease. Free Radical Biology & Medicine, 25(2), 169–174.

    CAS  Google Scholar 

  • Sha, D., Chin, L. S., & Li, L. (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kB signaling. Human Molecular Genetics, 19(2), 352–363.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimura, H., et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 25(3), 302–305.

    CAS  PubMed  Google Scholar 

  • Shruster, A., et al. (2011). Wnt signaling pathway overcomes the disruption of neuronal differentiation of neural progenitor cells induced by oligomeric amyloid beta-peptide. Journal of Neurochemistry, 116(4), 522–529.

    CAS  PubMed  Google Scholar 

  • Shulman, J. M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 6, 193–222.

    CAS  Google Scholar 

  • Song, S., et al. (2013). Characterization of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) mutations associated with Parkinson’s disease in mammalian cells and Drosophila. Journal of Biological Chemistry, 288(8), 5660–5672.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sospedra, M., & Martin, R. (2005). Immunology of multiple sclerosis. Annual Review of Immunology, 23, 683–747.

    CAS  PubMed  Google Scholar 

  • Strickland, D., & Bertoni, J. M. (2004). Parkinson’s prevalence estimated by a state registry. Movement Disorders, 19(3), 318–323.

    PubMed  Google Scholar 

  • Sun, X., et al. (2000). Interaction between protein kinase C delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress. Journal of Biological Chemistry, 275(11), 7470–7473.

    CAS  PubMed  Google Scholar 

  • Sundal, C., et al. (2012). Autosomal dominant Parkinson’s disease. Parkinsonism & Related Disorders, 18(Suppl 1), S7–S10.

    Google Scholar 

  • Surmeier, D. J., et al. (2011). The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience, 198, 221–231.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tain, L. S., et al. (2009). Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death and Differentiation, 16(8), 1118–1125.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toulouse, A., & Sullivan, A. M. (2008). Progress in Parkinson’s disease-where do we stand? Progress in Neurobiology, 85(4), 376–392.

    PubMed  Google Scholar 

  • Valente, E. M., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674), 1158–1160.

    CAS  PubMed  Google Scholar 

  • Varcin, M., et al. (2012). Oxidative stress in genetic mouse models of Parkinson’s disease. Oxidative Medicine and Cellular Longevity, 2012, 624925.

    PubMed Central  PubMed  Google Scholar 

  • Vinish, M., Anand, A., & Prabhakar, S. (2011). Altered oxidative stress levels in Indian Parkinson’s disease patients with PARK2 mutations. Acta Biochimica Polonica, 58(2), 165–169.

    CAS  PubMed  Google Scholar 

  • Wakabayashi, K., et al. (2007). The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology, 27(5), 494–506.

    PubMed  Google Scholar 

  • Wexler, E. M., Geschwind, D. H., & Palmer, T. D. (2008). Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Molecular Psychiatry, 13(3), 285–292.

    CAS  PubMed  Google Scholar 

  • Whitton, P. S. (2007). Inflammation as a causative factor in the aetiology of Parkinson’s disease. British Journal of Pharmacology, 150(8), 963–976.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitworth, A. J., et al. (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Disease Models & Mechanisms, 1(2–3), 168–174.

    CAS  Google Scholar 

  • Wood-Kaczmar, A., et al. (2008). PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE, 3(6), e2455.

    PubMed Central  PubMed  Google Scholar 

  • Yacoubian, T. A., & Standaert, D. G. (2009). Targets for neuroprotection in Parkinson’s disease. Biochimica et Biophysica Acta, 1792(7), 676–687.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan, M. H., Wang, X., & Zhu, X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology & Medicine, 62, 90–101.

    CAS  Google Scholar 

  • Ye, Q., et al. (2013). Astaxanthin suppresses MPP+ -induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Marine Drugs, 11(4), 1019–1034.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin, L., et al. (2010). Terminal differentiation of chronic myelogenous leukemia cells is induced by targeting of the MUC1-C oncoprotein. Cancer Biology & Therapy, 10(5), 483–491.

    CAS  Google Scholar 

  • Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.

    CAS  PubMed  Google Scholar 

  • Yun, J., et al. (2008). Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. Journal of Neuroscience, 28(53), 14500–14510.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zecca, L., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of National Academic Science USA, 101(26), 9843–9848.

    CAS  Google Scholar 

  • Zhang, L., et al. (2011). The Wnt/beta-catenin signaling pathway in the adult neurogenesis. European Journal of Neuroscience, 33(1), 1–8.

    PubMed  Google Scholar 

  • Zhang, W., et al. (2013). Human neuromelanin: An endogenous microglial activator for dopaminergic neuron death. Frontiers in Bioscience (Elite Edition), 5, 1–11.

    CAS  Google Scholar 

  • Zhou, C., et al. (2008). The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proceedings of National Academic Science USA, 105(33), 12022–12027.

    CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaki, G.S., Papavassiliou, A.G. Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease. Neuromol Med 16, 217–230 (2014). https://doi.org/10.1007/s12017-014-8294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8294-x

Keywords

Navigation