Skip to main content
Log in

Triazole Resistance in Aspergillus Species: An Emerging Problem

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Aspergillus species are ubiquitous fungal saprophytes found in diverse ecological niches worldwide. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis with high mortality rates in some immunocompromised hosts. Azoles are the first-line drugs in treating diseases caused by Aspergillus spp. However, increasing reports in A. fumigatus azole resistance, both in the clinical setting and in the environment, are threatening the effectiveness of clinical and agricultural azole drugs. The azole target is the 14-α sterol demethylase encoded by cyp51A gene and the main mechanisms of resistance involve the integration of tandem repeats in its promoter and/or single point mutations in this gene. In A. fumigatus, azole resistance can emerge in two different scenarios: a medical route in which azole resistance is generated during long periods of azole treatment in the clinical setting and a route of resistance derived from environmental origin due to extended use of demethylation inhibitors in agriculture. The understanding of A. fumigatus azole resistance development and its evolution is needed in order to prevent or minimize its impact. In this article, we review the current situation of azole resistance epidemiology and the predominant molecular mechanisms described based on the resistance acquisition routes. In addition, the clinical implications of A. fumigatus azole resistance and future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rüping MJ, Vehreschild JJ, Cornely OA. Patients at high risk of invasive fungal infections: when and how to treat. Drugs. 2008;68(14):1941–62.

    Article  PubMed  Google Scholar 

  2. Guinea J, Torres-Narbona M, Gijón P, Muñoz P, Pozo F, Peláez T, et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect. 2010;16(7):870–7.

    Article  CAS  PubMed  Google Scholar 

  3. Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ. Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med. 2014;5(2):a019786.

    Article  PubMed  Google Scholar 

  4. Warris A. Azole-resistant aspergillosis. J Infect. 2015;71(1):121–5.

    Article  Google Scholar 

  5. Gonçalves SS, Souza AC, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses. 2016;59(4):198–219.

    Article  CAS  Google Scholar 

  6. Almyroudis NG, Holland SM, Segal BH. Invasive aspergillosis in primary immunodeficiencies. Med Mycol. 2005;43(1):247–59.

    Article  Google Scholar 

  7. Dimopoulos G, Frantzeskaki F, Poulakou G, Armaganidis A. Invasive aspergillosis in the intensive care unit. Ann NY Acad Sci. 2012;1272:31–9.

    Article  PubMed  Google Scholar 

  8. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–100.

    Article  PubMed  Google Scholar 

  9. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–11.

    Article  PubMed  Google Scholar 

  10. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13.

  11. Segal BH. Aspergillosis. N Engl J Med. 2009;360(18):1870–84.

    Article  CAS  PubMed  Google Scholar 

  12. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of America. Clin Infect Dis. 2008;46:327–60.

    Article  CAS  PubMed  Google Scholar 

  13. Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63:e1–60.

    Article  PubMed  Google Scholar 

  14. Fromtling RA. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev. 1988;1(2):187–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect. 2004;10(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Miceli MH, Kauffman CA. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis. 2015;61:1558–65.

    Article  CAS  PubMed  Google Scholar 

  17. Verweij PE, Ananda-Rajah M, Andes D, Arendrup MC, Bruggemann RJ, Chowdhary A, et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat. 2015;21–22:30–40.

    Article  PubMed  Google Scholar 

  18. Johnson EM, Szekely A, Warnock DW. In vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother. 1998;42:741–5.

    Article  CAS  PubMed  Google Scholar 

  19. Manavathu EK, Cutright JL, Chandrasekar PH. Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother. 1998;42:3018–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15(7):1068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Linden JW, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp YJ, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis. 2011;17:1846–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Snelders E, van der Lee HA, Kuijpers J, Rijs AJ, Varga J, Samson RA, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008.11;5(11):e219.

  23. Camps SM, Rijs AJ, Klaassen CH, Meis JF, O’Gorman CM, Dyer PS, et al. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol. 2012;50(8):2674–80.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baddley JW, Marr KA, Andes DR, Walsh TJ, Kauffman CA, Kontoyiannis DP, et al. Patterns of susceptibility of Aspergillus isolates recovered from patients enrolled in the transplant-associated infection surveillance network. J Clin Microbiol. 2009;47:3271–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mortensen KL, Jensen RH, Johansen HK, Skov M, Pressler T, Howard SJ, et al. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol. 2011;49:2243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burgel PR, Baixench MT, Amsellem M, Audureau E, Chapron J, Kanaan R, et al. High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob Agents Chemother. 2012;56:869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tashiro M, Izumikawa K, Hirano K, Ide S, Mihara T, Hosogaya N, et al. Correlation between triazole treatment history and susceptibility in clinically isolated Aspergillus fumigatus. Antimicrob Agents Chemother. 2012;56:4870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alastruey-Izquierdo A, Mellado E, Pelaez T, Peman J, Zapico S, Alvarez, et al. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP study). Antimicrob Agents Chemother. 2013;57:3380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Escribano P, Pelaez T, Muñoz P, Bouza E, Guinea J. Is azole resistance in Aspergillus fumigatus a problem in Spain? Antimicrob Agents Chemother. 2013;57:2815–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fischer J, van Koningsbruggen-Rietschel S, Rietschel E, Vehreschild MJ, Wisplinghoff H, Kronke M, et al. Prevalence and molecular characterization of azole resistance in Aspergillus spp. Isolates from German cystic fibrosis patients. J Antimicrob Chemother. 2014;69:1533–6.

    Article  CAS  PubMed  Google Scholar 

  31. Steinmann J, Hamprecht A, Vehreschild MJGT, Cornely OA, Buchheidt D, Spiess B, et al. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother. 2015;70:1522–6.

    Article  CAS  PubMed  Google Scholar 

  32. Jensen RH, Hagen F, Astvad KMT, Tyron A, Meis JF, Arendrup MC. Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes. Clin Microbiol Infect. 2016;22:(6)570.e1–9.

  33. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, et al. Molecular identification of Aspergillus species collected for the transplant-associated infection surveillance network. J Clin Microbiol. 2009;47:3138–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balajee SA, Marr KA. Phenotypic and genotypic identification of human pathogenic aspergilli. Future Microbiol. 2006;1:435–45.

    Article  CAS  PubMed  Google Scholar 

  35. Vinh DC, Shea YR, Sugui JA, Parrilla-Castellar ER, Freeman AF, Campbell JW, et al. Invasive aspergillosis due to Neosartorya udagawae. Clin Infect Dis. 2009;49:102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Posteraro B, Mattei R, Trivella F, Maffei A, Torre A, De Carolis E, et al. Uncommon Neosartorya udagawae fungus as a causative agent of severe corneal infection. J Clin Microbiol. 2011;49(6):2357–60.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alanio A, Denis B, Hamane S, Raffoux E, Peffault de Latour R, Menotti J, et al. Azole resistance of Aspergillus fumigatus in immunocompromised patients with invasive aspergillosis. Emerg Infect Dis. 2016;22(1):157–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van der Linden JW, Arendrup MC, Melchers WJ, Verweij PE. Azole resistance of Aspergillus fumigatus in immunocompromised patients with invasive aspergillosis. Emerg Infect Dis. 2016;22(1):158–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fuhren J, Voskuil WS, Boel CH, Haas PJ, Hagen F, Meis JF, et al. High prevalence of azole resistance in Aspergillus fumigatus isolates from high-risk patients. J Antimicrob Chemother. 2015;70(10):2894–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta. 2007;1770(3):467–77.

    Article  CAS  PubMed  Google Scholar 

  41. Hargrove TY, Wawrzak Z, Lamb DC, Guengerich FP, Lepesheva GI. Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs. J Biol Chem. 2015;290:23916–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghannoum MA, Rice LB. antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marichal P, Gorrens J, Vanden Bossche H. The action of itraconazole and ketoconazole on growth and sterol synthesis in Aspergillus fumigatus and Aspergillus niger. Sabouraudia. 1985;23(1):13–21.

    Article  Google Scholar 

  44. Parker JE, Warrilow AG, Price CL, Mullins JG, Kelly DE, Kelly SL. Resistance to antifungals that target CYP51. J Chem Biol. 2014;7:143–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL. Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol. 2001;39:2431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mellado E, Garcia-Effron G, Buitrago MJ, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL. Targeted gene disruption of the 14-alpha sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob Agents Chemother. 2005;49:2536–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog. 2007;3:e24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol. 2014;166(4):471–84.

    Article  PubMed  Google Scholar 

  49. Buied A, Moore CB, Denning DW, Bowyer P. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother. 2013;68:512–4.

    Article  CAS  PubMed  Google Scholar 

  50. Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, Bowyer P, et al. Azole antifungal resistance in A. fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65(10):2116–8.

    Article  CAS  PubMed  Google Scholar 

  51. Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodriguez-Tudela JL. A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2003;47:1120–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mann PA, Parmegiani RM, Wei SQ, Mendrick CA, Li X, Loebenberg D, et al. Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14alpha-demethylase. Antimicrob Agents Chemother. 2003;47:577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mellado E, Garcia-Effron G, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL. Substitutions at methionine 220 in the 14-alpha sterol demethylase (Cyp51A) of Aspergillus fumigatus are responsible for resistance in vitro to azole antifungal drugs. Antimicrob Agents Chemother. 2004;48:2747–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Li H, Li R, Bu D, Wan Z. Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J Antimicrob Chemother. 2005;55:31–7.

    Article  CAS  PubMed  Google Scholar 

  55. Bellete B, Raberin H, Morel J, Flori P, Hafid J, Manhsung RT. Acquired resistance to voriconazole and itraconazole in a patient with pulmonary aspergilloma. Med Mycol. 2010;48:197–200.

    Article  CAS  PubMed  Google Scholar 

  56. Pelaez T, Gijon P, Bunsow E, Bouza E, Sanchez-Yebra W, Valerio M, et al. Resistance to voriconazole due to a G448S substitution in Aspergillus fumigatus in a patient with cerebral aspergillosis. J Clin Microbiol. 2012;50:2531–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krishnan Natesan S, Wu W, Cutright JL, Chandrasekar PH. In vitro-in vivo correlation of voriconazole resistance due to G448S mutation (cyp51A gene) in Aspergillus fumigatus. Diagn Microbiol Infect Dis. 2012;74(3):272–7.

    Article  CAS  PubMed  Google Scholar 

  58. Manavathu EK, Baskaran I, Krishnan S, Alangaden G, Chandrasekar PH. Cytochrome P450 14-alpha-sterol demethylase mutation dependent triazole cross-resistance in Aspergillus fumigatus. In: Proceedings of 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy; Chicago, IL, USA; 2003 Sep 14–17. Abstract M–471.

  59. Howard SJ, Webster I, Moore CB, Gardiner RE, Park S, Perlin DS, et al. Multi-azole resistance in Aspergillus fumigatus. Int J Antimicrob Agents. 2006;28:450–3.

    Article  CAS  PubMed  Google Scholar 

  60. Albarrag AM, Anderson MJ, Howard SJ, Robson GD, Warn PA, Sanglard D, et al. Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51a promoter. Antimicrob Agents Chemother. 2011;55:5113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fraczek MG, Bromley M, Bowyer P. An improved model of the Aspergillus fumigatus CYP51A protein. Antimicrob Agents Chemother. 2011;55(5):2483–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Warrilow AG, Parker JE, Price CL, Nes WD, Kelly SL, Kelly DE. In vitro biochemical study of cyp51-mediated azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2015;59(12):7771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 2004;48:4405–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Alanio A, Sitterle E, Liance M, Farrugia C, Foulet F, Botterel F, et al. Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. J Antimicrob Chemother. 2011;66:371–4.

    Article  CAS  PubMed  Google Scholar 

  65. Escribano P, Recio S, Pelaez T, Bouza E, Guinea J. Aspergillus fumigatus strains with mutations in the cyp51A gene do not always show phenotypic resistance to itraconazole, voriconazole, or posaconazole. Antimicrob Agents Chemother. 2011;55:2460–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Camps SM, van der Linden JW, Li Y, Kuijper EJ, van Dissel JT, Verweij PE, et al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother. 2012;56:10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bader O, Weig M, Reichard U, Lugert R, Kuhns M, Christner M, et al. cyp51A-based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany. Antimicrob Agents Chemother. 2013;57:3513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Monzon A, Cuenca-Estrella M. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents Chemother. 2008;52(7):2468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Snelders E, Huis In ‘t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75:4053–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alanio A, Cabaret O, Sitterlé E, Costa JM, Brisse S, Cordonnier C, et al. Azole preexposure affects the Aspergillus fumigatus population in patients. Antimicrob Agents Chemother. 2012;56(9):4948–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao Y, Stensvold CR, Perlin DS, Arendrup MC. Azole resistance in Aspergillus fumigatus from bronchoalveolar lavage fluid samples of patients with chronic diseases. J Antimicrob Chemother. 2013;68:1497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front Microbiol. 2015;6:428.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kidd SE, Goeman E, Meis JF, Slavin MA, Verweij PE. Multi-triazole-resistant Aspergillus fumigatus infections in Australia. Mycoses. 2015;58:350–5.

    Article  CAS  PubMed  Google Scholar 

  74. Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, et al. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. MBio. 2015;6(3):e00536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Snelders E, Karawajczyk A, Schaftenaar G, Verweij PE, Melchers WJ. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother. 2010;54(6):2425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garcia-Rubio R, Monteiro MC, Alcazar-Fuoli L, Cuesta I, Pelaez T, Mellado E. Aspergillus fumigatus cyp51A polymorphisms: SNPs with or without significance? In: 7th Advances Against Aspergillosis. Manchester, UK; 2016 March 3–5. Abstract P-37.

  77. Mellado E, Garcia-Effron G, Alcazar-Fuoli L, Melchers WJ, Verweij PE, Cuenca-Estrella M, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51(6):1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van der Linden JW, Camps SM, Kampinga GA, Arends JP, Debets-Ossenkopp YJ, Haas PJ, et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis. 2013;57:513–20.

    Article  PubMed  CAS  Google Scholar 

  79. Vermeulen E, Maertens J, Schoemans H, Lagrou K. Azole-resistant Aspergillus fumigatus due to TR46/Y121F/T289A mutation emerging in Belgium, July 2012. Eur Surveill. 2012;17(48):20326

    Google Scholar 

  80. Astvad KM, Jensen RH, Hassan TM, Mathiasen EG, Thomsen GM, Pedersen UG, et al. First detection of TR46/Y121F/T289A and TR34/L98H alterations in Aspergillus fumigatus isolates from azole-naive patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother. 2014;58:5096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF. Azole-resistant Aspergillus fumigatus with the environmental TR46/Y121F/T289A mutation in India. J Antimicrob Chemother. 2014;69(2):555–7.

    Article  CAS  PubMed  Google Scholar 

  82. Chowdhary A, Sharma C, van den Boom M, Yntema JB, Hagen F, Verweij PE, et al. Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J Antimicrob Chemother. 2014;69:2979–83.

    Article  CAS  PubMed  Google Scholar 

  83. Chen Y, Wang H, Lu Z, Li P, Zhang Q, Jia T, et al. Emergence of TR46/Y121F/T289A in an Aspergillus fumigatus isolate from a Chinese patient. Antimicrob Agents Chemother. 2015;59:7148–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lavergne RA, Morio F, Favennec L, Dominique S, Meis JF, Gargala G, et al. First description of azole-resistant Aspergillus fumigatus due to TR46/Y121F/T289A mutation in France. Antimicrob Agents Chemother. 2015;59:4331–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pelaez T, Monteiro MC, Garcia-Rubio R, Bouza E, Gomez-Lopez A, Mellado E. First detection of Aspergillus fumigatus azole-resistant strain due to cyp51A TR46/Y121F/T289A in an azole-naive patient in Spain. New Microbes New Infect. 2015;6:33–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Le Pape P, Lavergne RA, Morio F, Alvarez-Moreno C. Multiple fungicide-driven alterations in azole-resistant Aspergillus fumigatus, Colombia, 2015. Emerg Infect Dis. 2016;22:156–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hagiwara D, Takahashi H, Fujimoto M, Sugahara M, Misawa Y, Gonoi T, et al. Multi-azole resistant Aspergillus fumigatus harboring cyp51A TR46/Y121F/T289A isolated in Japan. J Infect Chemother. 2016;22(8):577–9.

    Article  CAS  PubMed  Google Scholar 

  88. Tangwattanachuleeporn M, Minarin N, Saichan S, Sermsri P, Mitkornburee R, Groß U, et al. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med Mycol. 2016. doi:10.1093/mmy/myw090

  89. Wiederhold NP, Gil VG, Gutierrez F, Lindner JR, Albataineh MT, McCarthy DI, et al. First detection of TR34/L98H and TR46/Y121F/T289A cyp51 mutations in Aspergillus fumigatus isolates in the United States. J Clin Microbiol. 2016;54:168–71.

    Article  CAS  PubMed  Google Scholar 

  90. Lescar J, Meyer I, Akshita K, Srinivasaraghavan K, Verma C, Palous M, et al. Aspergillus fumigatus harbouring the sole Y121F mutation shows decreased susceptibility to voriconazole but maintained susceptibility to itraconazole and posaconazole. J Antimicrob Chemother. 2014;69(12):3244–7.

    Article  CAS  PubMed  Google Scholar 

  91. Hodiamont CJ, Dolman KM, Ten Berge IJ, Melchers WJ, Verweij PE, Pajkrt D. Multiple-azole-resistant Aspergillus fumigatus osteomyelitis in a patient with chronic granulomatous disease successfully treated with long-term oral posaconazole and surgery. Med Mycol. 2009;47:217–20.

    Article  CAS  PubMed  Google Scholar 

  92. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:11–3.

    Article  Google Scholar 

  93. Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell. 2004;3(6):1639–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol. 2010;47(2):94–106.

    Article  PubMed  CAS  Google Scholar 

  95. Lamping E, Ranchod A, Nakamura K, Tyndall JD, Niimi K, Holmes AR, et al. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Antimicrob Agents Chemother. 2009;53(2):354–69.

    Article  CAS  PubMed  Google Scholar 

  96. Samaranayake YH, Cheung BP, Wang Y, Yau JY, Yeung KW, Samaranayake LP. Fluconazole resistance in Candida glabrata is associated with increased bud formation and metallothionein production. J Med Microbiol. 2013;62(2):303–18.

    Article  CAS  PubMed  Google Scholar 

  97. Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IS, et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol. 2002;36(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  98. da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MH, Kim HS, et al. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet. 2006;50:32–44.

    Article  PubMed  CAS  Google Scholar 

  99. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, et al. The cdr1B efflux transporter is associated with non-cyp51 a mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother. 2013;68:1486–96.

    Article  CAS  PubMed  Google Scholar 

  100. Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, Metzler LJ, et al. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog. 2008;4(11):e1000200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Moye-Rowley WS. Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus. Front Microbiol. 2015;6:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Camps SM, Dutilh BE, Arendrup MC, Rijs AJ, Snelders E, Huynen MA, et al. Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One. 2012;7(11):e50034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog. 2016;12(7):e1005775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bromley M, Johns A, Davies E, Fraczek M, Gilsenan JM, Kurbatova N, et al. Mitochondrial complex i is a global regulator of secondary metabolism, virulence and azole sensitivity in fungi. PLoS One. 2016;11:e0158724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lessing F, Kniemeyer O, Wozniok I, Loeffler J, Kurzai O, Haert A, et al. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell. 2007;6:2290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qiao J, Liu W, Li R. Truncated Afyap1 attenuates antifungal susceptibility of Aspergillus fumigatus to voriconazole and confers adaptation of the fungus to oxidative stress. Mycopathologia. 2010;170:155–60.

    Article  PubMed  Google Scholar 

  107. Richardson M, Lass-Flörl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect. 2008;14(Suppl 4):5–24.

    Article  PubMed  Google Scholar 

  108. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol. 2007;59:147–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frisvad JC, Larsen TO. Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus Section Fumigati. Front Microbiol. 2016;6:1485.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother. 2008;52:1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van der Linden JW, Warris A, Verweij PE. Aspergillus species intrinsically resistant to antifungal agents. Med Mycol. 2011;49(Suppl 1):82–9.

    Article  Google Scholar 

  112. Alastruey-Izquierdo A, Alcazar-Fuoli L, Cuenca-Estrella M. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia. 2014;178:427–33.

    Article  CAS  PubMed  Google Scholar 

  113. Lamoth F. Aspergillus fumigatus-related species in clinical practice. Front Microbiol. 2016;7:683.

    PubMed  PubMed Central  Google Scholar 

  114. Datta K, Rhee P, Byrnes E, Garcia-Effron G, Perlin DS, Staab JF, et al. Isavuconazole activity against Aspergillus lentulus, Neosartorya udagawae, and Cryptococcus gattii, emerging fungal pathogens with reduced azole susceptibility. J Clin Microbiol. 2013;51(9):3090–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alcazar-Fuoli L, Cuesta I, Rodriguez-Tudela JL, Cuenca-Estrella M, Sanglard D, Mellado E. Three-dimensional models of 14 alpha- sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. Int J Antimicrob Agents. 2011;38:426–34.

    Article  CAS  PubMed  Google Scholar 

  116. Mellado E, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL. Role of Aspergillus lentulus 14-α sterol demethylase (Cyp51A) in azole drug susceptibility. Antimicrob Agents Chemother. 2011;55(12):5459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Balajee SA, Gribskov J, Brandt M, Ito J, Fothergill A, Marr KA. Mistaken identity: Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J Clin Microbiol. 2005;43:5996–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Guinea J, Sandoval-Denis M, Escribano P, Pelaez T, Guarro J, Bouza E. Aspergillus citrinoterreus, a new species of section terrei isolated from samples of patients with nonhematological predisposing conditions. J Clin Microbiol. 2015;53:611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Varga J, Houbraken J, van der Lee HA, Verweij PE, Samson RA. Aspergillus calidoustus sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. Eukaryot Cell. 2008;7:630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alastruey-Izquierdo A, Cuesta I, Houbraken J, Cuenca-Estrella M, Monzon A, Rodriguez-Tudela JL. In vitro activity of nine antifungal agents against clinical isolates of Aspergillus calidoustus. Med Mycol. 2010;48:97–102.

    Article  CAS  PubMed  Google Scholar 

  121. Meneau I, Sanglard D. Azole and fungicide resistance in clinical and environmental Aspergillus fumigatus isolates. Med Mycol. 2005;43(1):307–11.

    Article  CAS  Google Scholar 

  122. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2015;5:a019752.

    Article  Google Scholar 

  123. Bowyer P, Moore CB, Rautemaa R, Denning DW, Richardson MD. Azole antifungal resistance today: focus on Aspergillus. Curr Infect Dis Rep. 2011;13(6):485–91.

    Article  PubMed  Google Scholar 

  124. Dannaoui E, Borel E, Monier MF, Piens MA, Picot S, Persat F. Acquired itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother. 2001;47(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  125. Snelders E, Melchers WJ, Verweij PE. Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis? Future Microbiol. 2011;6:335–47.

    Article  CAS  PubMed  Google Scholar 

  126. Howard SJ, Pasqualotto AC, Anderson MJ, Leatherbarrow H, Albarrag AM, Harrison E, et al. Major variations in Aspergillus fumigatus arising within aspergillomas in chronic pulmonary aspergillosis. Mycoses. 2013;56:434–41.

    Article  CAS  PubMed  Google Scholar 

  127. Chen J, Li H, Li R, Bu D, Wan Z. Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J Antimicrob Chemother. 2004;55:31–7.

    Article  PubMed  CAS  Google Scholar 

  128. Stensvold RC, Jørgensen LN, Arendrup MC. Azole-resistant invasive aspergillosis: relationship to agriculture. Curr Fung Infect Rep. 2012;6:178–91.

    Article  Google Scholar 

  129. Snelders E, Camps SM, Karawajczyk A, Schaftenaar G, Kema GH, van der Lee HA, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One. 2012;7:e31801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hamamoto H, Hasegawa K, Nakaune R, Lee YJ, Makizumi Y, Akutsu K. Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol. 2000;66:3421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ghosoph JM, Schmidt LS, Margosan DA, Smilanick JL. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Posthavest Biol Tec. 2007;44:9–18.

    Article  CAS  Google Scholar 

  132. Schnabel G, Jones AL. The 14alpha-demethylase (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology. 2001;91:102–10.

    Article  CAS  PubMed  Google Scholar 

  133. Ma Z, Proffer TJ, Jacobs JL, Sundin GW. Overexpression of the 14 alpha-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol. 2006;72:2581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luo CX, Schnabel G. The cytochrome P450 lanosterol 14alpha-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl Environ Microbiol. 2008;74(2):359–66.

    Article  CAS  PubMed  Google Scholar 

  135. Délye C, Laigret F, Corio-Costet MF. A mutation in the 14alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol. 1997;63:2966–70.

    PubMed  PubMed Central  Google Scholar 

  136. Délye C, Bousset L, Corio-Costet MF. PCR cloning and detection of point mutations in the eburicol 14α-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a “recalcitrant” fungus. Current Genetics. 1998;34:399–403.

    Article  PubMed  Google Scholar 

  137. Butters JA, Zhou MC, Hollomon DW. The mechanism of resistance to sterol 14α-demethylation inhibitors in a mutant (Erg40) of Ustilago maydis. Pest Manag Sci. 2000;56:257–63.

    Article  CAS  Google Scholar 

  138. Wyand RA, Brown JK. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genet Biol. 2005;42(8):726–35.

    Article  CAS  PubMed  Google Scholar 

  139. Fraaije BA, Cools HJ, Kim SH, Motteram J, Clark WS, Lucas JA. A novel substitution I381V in the sterol 14-α demethylase (Cyp51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Mol Plant Pathol. 2007;8:245–54.

    Article  CAS  PubMed  Google Scholar 

  140. Leroux P, Albertini C, Gautier A, Gredt M, Walker AS. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci. 2007;63:688–98.

    Article  CAS  PubMed  Google Scholar 

  141. Stammler G, Cordero J, Koch A, Semar M, Schlehuber S. Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Protect. 2009;28:891–7.

    Article  CAS  Google Scholar 

  142. Mair WJ, Deng W, Mullins JG, West S, Wang P, Besharat N, et al. demethylase inhibitor fungicide resistance in Pyrenophora teres f. sp. teres associated with target site modification and inducible overexpression of cyp51. Front Microbiol. 2016;7:1279.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Carter HE, Fraaije BA, West JS, Kelly SL, Mehl A, Shaw MW, et al. Alterations in the predicted regulatory and coding regions of the sterol 14α-demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae. Mol Plant Pathol. 2014;15(5):513–22.

    Article  CAS  PubMed  Google Scholar 

  144. European Centre for Disease Prevention and Control. Risk assessment on the impact of environmental usage of triazoles on the development and spread of resistance to medical triazoles in Aspergillus species. Stockholm: ECDC 2013; 2013. In: http://ecdc.europa.eu/en/publications/technical_reports/Pages/index.aspx. Accessed 1 Nov 2016.

  145. Verweij PE, Mellado E, Melchers WJ. Multiple-triazole-resistant aspergillosis. N Engl J Med. 2007;356:1481–3.

    Article  CAS  PubMed  Google Scholar 

  146. Chowdhary A, Kathuria S, Xu J, Sharma C, Sundar G, Singh PK, et al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. PLoS One. 2012;7:e52871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bader O, Tünnermann J, Dudakova A, Tangwattanachuleeporn M, Weig M, Groß U. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob Agents Chemother. 2015;59:4356–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Özmerdiven GE, Ak S, Ener B, Ağca H, Cilo BD, Tunca B, et al. First determination of azole resistance in Aspergillus fumigatus strains carrying the TR34/L98H mutations in Turkey. J Infect Chemother. 2015;21:581–6.

    Article  PubMed  CAS  Google Scholar 

  149. Wiederhold NP, Garcia Gil V, Lindner J, Sanders C, Fan H, Sutton DA, et al. Evaluation of Cyp51A mechanisms of azole resistance in Aspergillus fumigatus isolates from the United States. Mycoses. 2015;58(4):55.

    Google Scholar 

  150. Wu CJ, Wang HC, Lee JC, Lo HJ, Dai CT, Chou PH, et al. Azole-resistant Aspergillus fumigatus isolates carrying TR34/L98H mutations in Taiwan. Mycoses. 2015;58:544–9.

    Article  CAS  PubMed  Google Scholar 

  151. Chowdhary A, Sharma C, Hagen F, Meis JF. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol. 2014;9(5):697–711.

    Article  CAS  PubMed  Google Scholar 

  152. Denning DW, Bowyer P. Voriconazole resistance in Aspergillus fumigatus: should we be concerned? Clin Infect Dis. 2013;57(4):521–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Verweij PE, Chowdhary A, Melchers WJ, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016;62:362–8.

    Article  PubMed  Google Scholar 

  154. Aigner M, Lass-Flörl C. Treatment of drug-resistant Aspergillus infection. Expert Opin Pharmacother. 2015;16(15):2267–70.

    Article  PubMed  CAS  Google Scholar 

  155. Marr KA, Schlamm HT, Herbrecht R, Rottinghaus ST, Bow EJ, Cornely OA, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162:81–9.

    Article  PubMed  Google Scholar 

  156. Panackal AA. Combination antifungal therapy for invasive aspergillosis revisited. Med Mycol Open Access. 2016;2(2):12.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Alanio A, Denis B, Hamane S, Raffoux E, Peffault de la Tour R, Touratier S, et al. New therapeutic strategies for invasive aspergillosis in the era of azole resistance: how should the prevalence of azole resistance be defined? J Antimicrob Chemother. 2016;71(8):2075–8.

    Article  PubMed  Google Scholar 

  158. Spiess B, Postina P, Reinwald M, Cornely OA, Hamprecht A, Hoenigl M, et al. Incidence of Cyp51 A key mutations in Aspergillus fumigatus—a study on primary clinical samples of immunocompromised patients in the period of 1995–2013. PLoS One. 2014;9(7):e103113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Chong GM, van der Beek MT, von dem Borne PA, Boelens J, Steel E, Kampinga GA, et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay in 201 patients with haematological disease suspected for invasive aspergillosis. J Antimicrob Chemother. 2016;71(12):3528–35.

    Article  CAS  PubMed  Google Scholar 

  160. Denning DW, Bromley MJ. Infectious disease. How to bolster the antifungalpipeline. Science. 2015;347:1414–6.

    Article  CAS  PubMed  Google Scholar 

  161. Stewart ER, Thompson GR. Treatment of primary pulmonary aspergillosis: an assessment of the evidence. J Fungi. 2016;2(3):25.

    Article  Google Scholar 

  162. Rivero-Menendez O, Alastruey-Izquierdo A, Mellado E, Cuenca-Estrella M (2016) Triazole resistance in Aspergillus spp.: a worldwide problem? J Fungi 2(3):21.

    Article  Google Scholar 

  163. ECPA Assessment of the Economic Importance of Azoles in European Agriculture: WheatCaseStudy. Bologna: NOMISMA; 2012. In: http://www.ecpa.eu/article/agriculture-today/assessmenteconomicimportance-azoles-european-agriculture-wheat-casestud. Accessed 5 Nov 2016.

  164. Price CL, Parker JE, Warrilow AG, Kelly DE, Kelly SL. Azole fungicides—understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag Sci. 2015;71(8):1054–8.

    Article  CAS  PubMed  Google Scholar 

  165. Hagiwara D, Takahashi H, Watanabe A, Takahashi-Nakaguchi A, Kawamoto S, Kamei K, Gonoi T. Whole-genome comparison of Aspergillus fumigatus strains serially isolated from patients with aspergillosis. J Clin Microbiol. 2014;52:4202–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Jones L, Riaz S, Morales-Cruz A, Amrine KC, McGuire B, Gubler WD, et al. Adaptive genomic structural variation in the grape powdery mildew pathogen. Erysiphe necator. BMC Genomics. 2014;15:1081.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vermeulen E, Maertens J, De BA, Nulens E, Boelens J, Surmont I, et al. Nationwide surveillance of azole resistance in Aspergillus diseases. Antimicrob Agents Chemother. 2015;59:4569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Morio F, Aubin GG, Danner-Boucher I, Haloun A, Sacchetto E, Garcia-Hermoso D, et al. High prevalence of triazole resistance in Aspergillus fumigatus, especially mediated by TR34/L98H, in a French cohort of patients with cystic fibrosis. J Antimicrob Chemother. 2012;67:1870–3.

    Article  CAS  PubMed  Google Scholar 

  169. Amorim A, Guedes-Vaz L, Araujo R. Susceptibility to five antifungals of Aspergillus fumigatus strains isolated from chronically colonised cystic fibrosis patients receiving azole therapy. Int J Antimicrob Agents. 2010;35(4):396–9.

    Article  CAS  PubMed  Google Scholar 

  170. Verweij PE, Te Dorsthorst DT, Rijs AJ, De Vries-Hospers HG, Meis JF. Nationwide survey of in vitro activities of itraconazole and voriconazole against clinical Aspergillus fumigatus isolates cultured between 1945 and 1998. J Clin Microbiol. 2002;40(7):2648–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Klaassen CH, de Valk HA, Curfs-Breuker IM, Meis JF. Novel mixed-format real-time PCR assay to detect mutations conferring resistance to triazoles in Aspergillus fumigatus and prevalence of multi-triazole resistance among clinical isolates in the Netherlands. J Antimicrob Chemother. 2010;65(5):901–5.

    Article  CAS  PubMed  Google Scholar 

  172. van der Linden JW, Arendrup MC, Warris A, Lagrou K, Pelloux H, Hauser PM, et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis. 2015;21(6):1041–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Liu M, Zeng R, Zhang L, Li D, Lv G, Shen Y, et al. Multiple cyp51A-based mechanisms identified in azole-resistant isolates of Aspergillus fumigatus from China. Antimicrob Agents Chemother. 2015;59:4321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chowdhary A, Kathuria S, Randhawa HS, Gaur SN, Klaassen CH, Meis JF. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. J Antimicrob Chemother. 2012;67:362–6.

    Article  CAS  PubMed  Google Scholar 

  175. Seyedmousavi S, Hashemi SJ, Zibafar E, Zoll J, Hedayati MT, Mouton JW, et al. Azole-resistant Aspergillus fumigatus, Iran. Emerg Infect Dis. 2013;19:832–4.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Mohammadi F, Hashemi SJ, Zoll J, Melchers WJ, Rafati H, Dehghan P, et al. Quantitative analysis of single-nucleotide polymorphism for rapid detection of TR34. Antimicrob Agents Chemother. 2015;60:387–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Kikuchi K, Watanabe A, Ito J, Oku Y, Wuren T, Taguchi H, et al. Antifungal susceptibility of Aspergillus fumigatus clinical isolates collected from various areas in Japan. J Infect Chemother. 2014;20:336–8.

    Article  CAS  PubMed  Google Scholar 

  178. Ahmad S, Joseph L, Hagen F, Meis JF, Khan Z. Concomitant occurrence of itraconazole-resistant and -susceptible strains of Aspergillus fumigatus in routine cultures. J Antimicrob Chemother. 2015;70:412–5.

    Article  CAS  PubMed  Google Scholar 

  179. Hsueh PR, Lau YJ, Chuang YC, Wan JH, Huang WK, Shyr JM, et al. Antifungal susceptibilities of clinical isolates of Candida species, Cryptococcus neoformans, and Aspergillus species from Taiwan: surveillance of multicenter antimicrobial resistance in Taiwan program data from 2003. Antimicrob Agents Chemother. 2005;49:512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Mellado.

Ethics declarations

Funding

Funding was provided by Instituto de Salud Carlos III (FIS:PI15CIII/00019, REIPI RD16CIII/0004/0003).

Conflict of Interest

RGR, MCE and EM have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Rubio, R., Cuenca-Estrella, M. & Mellado, E. Triazole Resistance in Aspergillus Species: An Emerging Problem. Drugs 77, 599–613 (2017). https://doi.org/10.1007/s40265-017-0714-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0714-4

Keywords

Navigation