Skip to main content

Advertisement

Log in

Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

For a comprehensive evaluation of genes that have their expression modulated during exposure of the mycelia to voriconazole, we performed a large-scale analysis of gene expression in Aspergillus fumigatus using a microarray hybridization approach. By comparing the expression of genes between the reference time and after addition of voriconazole (30, 60, 120, and 240 min), we identified 2,271 genes differentially expressed in the wild-type strain. To validate the expression of some of these genes during exposure to voriconazole, we analyzed 13 genes showing higher expression in the presence of voriconazole by real-time RT-PCR. Although the magnitudes of induction differed between the two experimental systems, in about 85% of the cases they were in good agreement with the microarray data. To our knowledge this is the first study of microarray hybridization analysis for a filamentous fungus exposed to an antifungal agent. In our study, we have observed: (i) a decreased mRNA expression of various ergosterol biosynthesis genes; (ii) increased mRNA levels of genes involved in a variety of cell functions, such as transporters, transcription factors, proteins involved in cell metabolism, and hypothetical proteins; and (iii) the involvement of the cyclic AMP-protein kinase signaling pathway in the increased mRNA expression of several of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM (2003) Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem 12:34998–35015

    Article  CAS  Google Scholar 

  • Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD (2004) Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 54:376–385

    Article  PubMed  CAS  Google Scholar 

  • Burns C, Geraghty R, Neville C, Murphy A, Kavanagh K, Doyle S (2005) Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus. Fungal Genet Biol 42:319–327

    Article  PubMed  CAS  Google Scholar 

  • Dannaoui E, Borel E, Monier MF, Piens MA, Picot S, Persat F (2001) Acquired itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 47:333–340

    Article  PubMed  CAS  Google Scholar 

  • De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670

    Article  PubMed  Google Scholar 

  • Denning DW (1996) Diagnosis and management of invasive aspergillosis. Curr Clin Top Infect Dis 16:277–299

    PubMed  CAS  Google Scholar 

  • Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA, Warnock DW, Kelly SL (1997) Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41:1364–1368

    PubMed  CAS  Google Scholar 

  • Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodríguez-Tudela JL (2003) A point mutation in the 14α-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 47:1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Espinel-Ingroff A, Fothergill A, Ghannoum M, Manavathu E, Ostrosky-Zeichner L, Pfaller M, Rinaldi M, Schell W, Walsh T (2005) Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J Clin Microbiol 43:5243–5246

    Article  PubMed  CAS  Google Scholar 

  • Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, Goldman MH, Goldman GH (2005) The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol 43:S313–S319

    Article  PubMed  CAS  Google Scholar 

  • Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529

    Article  PubMed  CAS  Google Scholar 

  • Herbrecht R, Denning D, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Silvestre R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415

    Article  PubMed  CAS  Google Scholar 

  • Jain P, Akula I, Edlind T (2003) Cyclic AMP signaling pathway modulates susceptibility of candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 47:3195–3201

    Article  PubMed  CAS  Google Scholar 

  • Kafer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    Article  PubMed  CAS  Google Scholar 

  • Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079

    Article  PubMed  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Kelly DE, Loeffler J, Einsele H (1996) Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet 348:1523–1524

    Article  PubMed  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Kelly DE, Manning NJ, Loeffler J, Hebart H, Schumacher U, Einsele H (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta 5,6-desaturation. FEBS Lett 400:80–82

    Article  PubMed  CAS  Google Scholar 

  • Kontoyiannis DP, Rupp S (2000) Cyclic AMP and fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 44:1743–1744

    Article  PubMed  CAS  Google Scholar 

  • Krappmann S, Bignell EM, Reichard U, Rogers T, Haynes K, Braus GH (2004) The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 52:785–799

    Article  PubMed  CAS  Google Scholar 

  • Langfelder K, Gattung S, Brakhage AA (2002) A novel method used to delete a new Aspergillus fumigatus ABC transporter-encoding gene. Curr Genet 41:268–274

    Article  PubMed  CAS  Google Scholar 

  • Liebmann B, Gattung S, Jahn B, Brakhage AA (2003) cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Genet Genomics 269:420–435

    Article  PubMed  CAS  Google Scholar 

  • Liebmann B, Muller M, Braun A, Brakhage AA (2004) The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun 72:5193–5203

    Article  PubMed  CAS  Google Scholar 

  • Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    Article  PubMed  CAS  Google Scholar 

  • Lupetti A, Danesi R, Campa M, del Tacca M, Kelly S (2002) Molecular basis of resístance to azole antifungals. Trends Mol Med 8:76–81

    Article  PubMed  CAS  Google Scholar 

  • Manavathu EK, Vazquez JA, Chandrasekar PH (1999) Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agent. Int J Antimicrob Agents 12:213–219

    Article  PubMed  CAS  Google Scholar 

  • Mann PA, Parmegiani RM, Wei S-Q, Mendrick CA, Li X, Loenberg D, DiDomenico B, Hare RS, Walker SS, McNicholas PM (2003) Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P-450 14α-demethylase. Antimicrob Agents Chemother 47:577–581

    Article  PubMed  CAS  Google Scholar 

  • Marichal P, Koymas L, Willlemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FCS, Odds FC, VandenBossche H (1999) Contribution of mutations in the cytochrome P-450 14-α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–2713

    PubMed  CAS  Google Scholar 

  • Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL (2001) Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438 (Erratum in: J Clin Microbiol 2001; 39:4225)

  • Nascimento AM, Goldman GH, Park S, Marras SA, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS (2003) Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother 47:1519–1526

    Article  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Proposed standard M38-A. National Committee for Clinical Laboratory Standards, Wayne

  • Nolte FS, Parkinson T, Falconer DJ, Dix S, Williams J, Gilmore C, Geller R, Wingard JR (1997) Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukaemia. Antimicrob Agents Chemother 44:196–199

    Google Scholar 

  • Osherov N, Kontoyannis DP, Romans A, May GS (2001) Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14α-demethylase gene, pdmA. J Antimicrob Chemother 48:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ramesh MA, Laidlaw RD, Durrenberger F, Orth AB, Kronstad JW (2001) The cAMP signal transduction pathway mediates resistance to dicarboximide and aromatic hydrocarbon fungicides in Ustilago maydis. Fungal Genet Biol 32:183–193

    Article  PubMed  CAS  Google Scholar 

  • Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J (2003a) Candida albicans: mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412

    Article  CAS  Google Scholar 

  • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J (2003b) Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976

    Article  CAS  Google Scholar 

  • Semighini CP, Marins M, Goldman MHS, Goldman GH (2002) Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol 68:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IS, Denning DW (2002) Increased expression of a novel Aspergillus fumigatus ABC transporter gene, AtrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol 36:199–206

    Article  PubMed  CAS  Google Scholar 

  • Tobin MB, Peery RB, Skatrud PL (1997) Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus. Gene 200:11–23

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005a) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821

    Article  CAS  Google Scholar 

  • Tsitsigiannis DI, Bok JW, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005b) Aspergillus cyclooxygenase-like enzymes are associated with prostaglandin production and virulence. Infect Immun 73:4548–4559

    Article  CAS  Google Scholar 

  • White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhang Y, Zhou Y, An S, Zhou Y, Cheng J (2002) Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother 49:905–915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Fundação de Amparo a Pesquisa do Estado de São Paulo and Conselho Nacional de Desenvolvimento Científico e Tecnológico, both from Brazil, for financial support for our research, and SPP1160 of the Deutsche Forschungsgemeinschaft for A.A.B. Microarray analysis work was supported by NIAID grant to W.C.N. We also thank the two anonymous reviewers and the editor for the suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo H. Goldman.

Additional information

Communicated by G. Braus

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, M.E.d.S., Malavazi, I., Savoldi, M. et al. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50, 32–44 (2006). https://doi.org/10.1007/s00294-006-0073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0073-2

Keywords

Navigation