Skip to main content
Log in

Treatment Strategies for Dravet Syndrome

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Dravet syndrome (DS) is a medically refractory epilepsy that onsets in the first year of life with prolonged seizures, often triggered by fever. Over time, patients develop other seizure types (myoclonic, atypical absences, drops), intellectual disability, crouch gait and other co-morbidities (sleep problems, autonomic dysfunction). Complete seizure control is generally not achievable with current therapies, and the goals of treatment are to balance reduction of seizure burden with adverse effects of therapies. Treatment of co-morbidities must also be addressed, as they have a significant impact on the quality of life of patients with DS. Seizures are typically worsened with sodium-channel agents. Accepted first-line agents include clobazam and valproic acid, although these rarely provide adequate seizure control. Benefit has also been noted with topiramate, levetiracetam, the ketogenic diet and vagal nerve stimulation. Several agents presently in development, specifically fenfluramine and cannabidiol, have shown efficacy in clinical trials. Status epilepticus is a recurring problem for patients with DS, particularly in their early childhood years. All patients should be prescribed a home rescue therapy (usually a benzodiazepine) but should also have a written seizure action plan that outlines when rescue should be given and further steps to take in the local hospital if the seizure persists despite home rescue therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dravet C. Les epilepsies graves de l’enfant. Vie Med. 1978;8:543–8.

    Google Scholar 

  2. Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011;52(Suppl 2):3–9.

    PubMed  Google Scholar 

  3. Dravet C. Dravet syndrome history. Dev Med Child Neurol. 2011;53(Suppl 2):1–6.

    PubMed  Google Scholar 

  4. Wu YW, Sullivan J, McDaniel SS, Meisler MH, Walsh EM, Li SX, Kuzniewicz MW. Incidence of Dravet Syndrome in a US Population. Pediatrics. 2015;136(5):e1310–5.

    PubMed  PubMed Central  Google Scholar 

  5. Bayat A, Hjalgrim H, Moller RS. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000: a population-based study from 2004 to 2009. Epilepsia. 2015;56(4):e36–9.

    CAS  PubMed  Google Scholar 

  6. Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T, Johnston J, Baloh R, Sander T, Meisler MH. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66(5):1531–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fukuma G, Oguni H, Shirasaka Y, Watanabe K, Miyajima T, Yasumoto S, Ohfu M, Inoue T, Watanachai A, Kira R, et al. Mutations of neuronal voltage-gated Na + channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia. 2004;45(2):140–8.

    CAS  PubMed  Google Scholar 

  8. Wang JW, Kurahashi H, Ishii A, Kojima T, Ohfu M, Inoue T, Ogawa A, Yasumoto S, Oguni H, Kure S, et al. Microchromosomal deletions involving SCN1A and adjacent genes in severe myoclonic epilepsy in infancy. Epilepsia. 2008;49(9):1528–34.

    CAS  PubMed  Google Scholar 

  9. Wang JW, Shi XY, Kurahashi H, Hwang SK, Ishii A, Higurashi N, Kaneko S, Hirose S. Prevalence of SCN1A mutations in children with suspected Dravet syndrome and intractable childhood epilepsy. Epilepsy Res. 2012;102(3):195–200.

    CAS  PubMed  Google Scholar 

  10. Zuberi SM, Brunklaus A, Birch R, Reavey E, Duncan J, Forbes GH. Genotype-phenotype associations in SCN1A-related epilepsies. Neurology. 2011;76(7):594–600.

    CAS  PubMed  Google Scholar 

  11. Xu X, Yang X, Wu Q, Liu A, Yang X, Ye AY, Huang AY, Li J, Wang M, Yu Z, et al. Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of “de novo” SCN1A Mutations in Children with Dravet Syndrome. Hum Mutat. 2015;36(9):861–72.

    PubMed  PubMed Central  Google Scholar 

  12. Cetica V, Chiari S, Mei D, Parrini E, Grisotto L, Marini C, Pucatti D, Ferrari A, Sicca F, Specchio N, et al. Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations. Neurology. 2017;88:1037–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chopra R, Isom LL. Untangling the dravet syndrome seizure network: the changing face of a rare genetic epilepsy. Epilepsy Curr Am Epilepsy Soc. 2014;14(2):86–9.

    Google Scholar 

  14. Brunklaus A, Dorris L, Zuberi SM. Comorbidities and predictors of health-related quality of life in Dravet syndrome. Epilepsia. 2011;52(8):1476–82.

    PubMed  Google Scholar 

  15. Villas N, Meskis MA, Goodliffe S. Dravet syndrome: Characteristics, comorbidities, and caregiver concerns. Epilepsy Behav E&B. 2017;74:81–6.

    Google Scholar 

  16. Eschbach K, Scarbro S, Juarez-Colunga E, Allen V, Hsu S, Knupp K. Growth and endocrine function in children with Dravet syndrome. Seizure. 2017;52:117–22.

    PubMed  Google Scholar 

  17. Sakauchi M, Oguni H, Kato I, Osawa M, Hirose S, Kaneko S, Takahashi Y, Takayama R, Fujiwara T. Mortality in Dravet syndrome: search for risk factors in Japanese patients. Epilepsia. 2011;52(Suppl 2):50–4.

    PubMed  Google Scholar 

  18. Skluzacek JV, Watts KP, Parsy O, Wical B, Camfield P. Dravet syndrome and parent associations: the IDEA League experience with comorbid conditions, mortality, management, adaptation, and grief. Epilepsia. 2011;52(Suppl 2):95–101.

    PubMed  Google Scholar 

  19. Cooper MS, McIntosh A, Crompton DE, McMahon JM, Schneider A, Farrell K, Ganesan V, Gill D, Kivity S, Lerman-Sagie T, et al. Mortality in Dravet syndrome. Epilepsy Res. 2016;128:43–7.

    PubMed  Google Scholar 

  20. Wirrell EC, Laux L, Donner E, Jette N, Knupp K, Meskis MA, Miller I, Sullivan J, Welborn M, Berg AT. Optimizing the diagnosis and management of dravet syndrome: recommendations from a North American Consensus Panel. Pediatr Neurol. 2017;68(18–34):e13.

    Google Scholar 

  21. Ceulemans B. Overall management of patients with Dravet syndrome. Dev Med Child Neurol. 2011;53(Suppl 2):19–23.

    PubMed  Google Scholar 

  22. Ragona F. Cognitive development in children with Dravet syndrome. Epilepsia. 2011;52(Suppl 2):39–43.

    PubMed  Google Scholar 

  23. Ragona F, Granata T, Dalla Bernardina B, Offredi F, Darra F, Battaglia D, Morbi M, Brazzo D, Cappelletti S, Chieffo D, et al. Cognitive development in Dravet syndrome: a retrospective, multicenter study of 26 patients. Epilepsia. 2011;52(2):386–92.

    PubMed  Google Scholar 

  24. Genton P, Velizarova R, Dravet C. Dravet syndrome: the long-term outcome. Epilepsia. 2011;52(Suppl 2):44–9.

    PubMed  Google Scholar 

  25. Harden C, Tomson T, Gloss D, Buchhalter J, Cross JH, Donner E, French JA, Gil-Nagel A, Hesdorffer DC, Smithson WH, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2017;88(17):1674–80.

    PubMed  Google Scholar 

  26. Dravet C, Bureau M, Dalla Bernardina B, Guerrini R. Severe myoclonic epilepsy in infancy (Dravet syndrome) 30 years later. Epilepsia. 2011;52(Suppl 2):1–2.

    PubMed  Google Scholar 

  27. Akiyama M, Kobayashi K, Yoshinaga H, Ohtsuka Y. A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia. 2010;51(6):1043–52.

    PubMed  Google Scholar 

  28. Catarino CB, Liu JY, Liagkouras I, Gibbons VS, Labrum RW, Ellis R, Woodward C, Davis MB, Smith SJ, Cross JH, et al. Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain. 2011;134(Pt 10):2982–3010.

    PubMed  PubMed Central  Google Scholar 

  29. Takayama R, Fujiwara T, Shigematsu H, Imai K, Takahashi Y, Yamakawa K, Inoue Y. Long-term course of Dravet syndrome: a study from an epilepsy center in Japan. Epilepsia. 2014;55(4):528–38.

    CAS  PubMed  Google Scholar 

  30. Bureau M, Dalla Bernardina B. Electroencephalographic characteristics of Dravet syndrome. Epilepsia. 2011;52(Suppl 2):13–23.

    PubMed  Google Scholar 

  31. Thanh TN, Chiron C, Dellatolas G, Rey E, Pons G, Vincent J, Dulac O. Long-term efficacy and tolerance of stiripentaol in severe myoclonic epilepsy of infancy (Dravet’s syndrome). Arch Pediatr. 2002;9(11):1120–7.

    PubMed  Google Scholar 

  32. Saito Y, Oguni H, Awaya Y, Hayashi K, Osawa M. Phenytoin-induced choreoathetosis in patients with severe myoclonic epilepsy in infancy. Neuropediatrics. 2001;32(5):231–5.

    CAS  PubMed  Google Scholar 

  33. Snoeijen-Schouwenaars FM, Veendrick MJ, van Mierlo P, van Erp G, de Louw AJ, Kleine BU, Schelhaas HJ, Tan IY. Carbamazepine and oxcarbazepine in adult patients with Dravet syndrome: friend or foe? Seizure. 2015;29:114–8.

    CAS  PubMed  Google Scholar 

  34. Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia. 1998;39(5):508–12.

    CAS  PubMed  Google Scholar 

  35. Dalic L, Mullen SA, Roulet Perez E, Scheffer I. Lamotrigine can be beneficial in patients with Dravet syndrome. Dev Med Child Neurol. 2015;57(2):200–2.

    PubMed  Google Scholar 

  36. Mueller A, Boor R, Coppola G, Striano P, Dahlin M, von Stuelpnagel C, Lotte J, Staudt M, Kluger G. Low long-term efficacy and tolerability of add-on rufinamide in patients with Dravet syndrome. Epilepsy Behav E&B. 2011;21(3):282–4.

    CAS  Google Scholar 

  37. Chipaux M, Villeneuve N, Sabouraud P, Desguerre I, Boddaert N, Depienne C, Chiron C, Dulac O, Nabbout R. Unusual consequences of status epilepticus in Dravet syndrome. Seizure. 2010;19(3):190–4.

    CAS  PubMed  Google Scholar 

  38. Chiron C. Current therapeutic procedures in Dravet syndrome. Dev Med Child Neurol. 2011;53(Suppl 2):16–8.

    PubMed  Google Scholar 

  39. Chiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia. 2011;52(Suppl 2):72–5.

    PubMed  Google Scholar 

  40. Bryant AE 3rd, Dreifuss FE. Valproic acid hepatic fatalities. III. US experience since 1986. Neurology. 1996;46(2):465–9.

    PubMed  Google Scholar 

  41. Dressler A, Trimmel-Schwahofer P, Reithofer E, Muhlebner A, Groppel G, Reiter-Fink E, Benninger F, Grassl R, Feucht M. Efficacy and tolerability of the ketogenic diet in Dravet syndrome—comparison with various standard antiepileptic drug regimen. Epilepsy Res. 2015;109:81–9.

    PubMed  Google Scholar 

  42. Inoue S, Yazawa S, Murahara T, Yamauchi R, Shimohama S. [Dramatic seizure reduction with levetiracetam in adult Dravet syndrome: a case report]. Rinsho shinkeigaku. Clin Neurol. 2015;55(3):151–4.

    Google Scholar 

  43. Sankar R. GABA(A) receptor physiology and its relationship to the mechanism of action of the 1,5-benzodiazepine clobazam. CNS Drugs. 2012;26(3):229–44.

    CAS  PubMed  Google Scholar 

  44. Redondo P, Vicente J, Espana A, Subira ML, De Felipe I, Quintanilla E. Photo-induced toxic epidermal necrolysis caused by clobazam. Br J Dermatol. 1996;135(6):999–1002.

    CAS  PubMed  Google Scholar 

  45. Yapici AK, Fidanci MK, Kilic S, Balamtekin N, Mutluay Arslan M, Yavuz ST, Kalman S. Stevens-Johnson Syndrome triggered by a combination of clobazam, lamotrigine and valproic acid in a 7-year-old child. Ann Burns Fire Disasters. 2014;27(3):121–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lyseng-Williamson KA, Yang LP. Spotlight on topiramate in epilepsy. CNS Drugs. 2008;22(2):171–4.

    CAS  PubMed  Google Scholar 

  47. Bourgeois BF. Pharmacokinetics and metabolism of topiramate. Drugs Today (Barc). 1999;35(1):43–8.

    CAS  Google Scholar 

  48. Coppola G, Capovilla G, Montagnini A, Romeo A, Spano M, Tortorella G, Veggiotti P, Viri M, Pascotto A. Topiramate as add-on drug in severe myoclonic epilepsy in infancy: an Italian multicenter open trial. Epilepsy Res. 2002;49(1):45–8.

    CAS  PubMed  Google Scholar 

  49. Kroll-Seger J, Portilla P, Dulac O, Chiron C. Topiramate in the treatment of highly refractory patients with Dravet syndrome. Neuropediatrics. 2006;37(6):325–9.

    CAS  PubMed  Google Scholar 

  50. Nieto-Barrera M, Candau R, Nieto-Jimenez M, Correa A, del Portal LR. Topiramate in the treatment of severe myoclonic epilepsy in infancy. Seizure. 2000;9(8):590–4.

    CAS  PubMed  Google Scholar 

  51. Fisher JL. The effects of stiripentol on GABA(A) receptors. Epilepsia. 2011;52(Suppl 2):76–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science. 2015;347(6228):1362–7.

    CAS  PubMed  Google Scholar 

  53. Verleye M, Buttigieg D, Steinschneider R. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels. J Neurosci Res. 2016;94(2):179–89.

    CAS  PubMed  Google Scholar 

  54. Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia. 2006;47(4):704–16.

    CAS  PubMed  Google Scholar 

  55. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci. 2008;28(10):2527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grosenbaugh DK, Mott DD. Stiripentol in refractory status epilepticus. Epilepsia. 2013;54(Suppl 6):103–5.

    CAS  PubMed  Google Scholar 

  57. Chiron C. Stiripentol. Expert Opin Investig Drugs. 2005;14(7):905–11.

    CAS  PubMed  Google Scholar 

  58. Mudigoudar B, Weatherspoon S, Wheless JW. Emerging antiepileptic drugs for severe pediatric epilepsies. Semin Pediatr Neurol. 2016;23(2):167–79.

    PubMed  Google Scholar 

  59. Jogamoto T, Yamamoto Y, Fukuda M, Suzuki Y, Imai K, Takahashi Y, Inoue Y, Ohtsuka Y. Add-on stiripentol elevates serum valproate levels in patients with or without concomitant topiramate therapy. Epilepsy Res. 2017;130:7–12.

    CAS  PubMed  Google Scholar 

  60. Moreland TA, Astoin J, Lepage F, Tombret F, Levy RH, Baillie TA. The metabolic fate of stiripentol in man. Drug Metab Dispos. 1986;14(6):654–62.

    CAS  PubMed  Google Scholar 

  61. Peigne S, Chhun S, Tod M, Rey E, Rodrigues C, Chiron C, Pons G, Jullien V. Population pharmacokinetics of stiripentol in paediatric patients with dravet syndrome treated with stiripentol, valproate and clobazam combination therapy. Clin Pharmacokinet. 2017. https://doi.org/10.1007/s40262-017-0592-7. Accessed 26 Mar 2018.

    Article  Google Scholar 

  62. Chiron C, Marchand MC, Tran A, Rey E, d’Athis P, Vincent J, Dulac O, Pons G. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet. 2000;356(9242):1638–42.

    CAS  PubMed  Google Scholar 

  63. Chiron C. Stiripentol. Neurotherapeutics. 2007;4(1):123–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Inoue Y, Ohtsuka Y, Group STPS. Long-term safety and efficacy of stiripentol for the treatment of Dravet syndrome: a multicenter, open-label study in Japan. Epilepsy Res. 2015;113:90–7.

    Google Scholar 

  65. Inoue Y, Ohtsuka Y, Oguni H, Tohyama J, Baba H, Fukushima K, Ohtani H, Takahashi Y, Ikeda S. Stiripentol open study in Japanese patients with Dravet syndrome. Epilepsia. 2009;50(11):2362–8.

    CAS  PubMed  Google Scholar 

  66. Wirrell EC, Laux L, Franz DN, Sullivan J, Saneto RP, Morse RP, Devinsky O, Chugani H, Hernandez A, Hamiwka L, et al. Stiripentol in Dravet syndrome: results of a retrospective US study. Epilepsia. 2013;54(9):1595–604.

    CAS  PubMed  Google Scholar 

  67. Inoue Y, Ohtsuka Y, Group STPS. Effectiveness of add-on stiripentol to clobazam and valproate in Japanese patients with Dravet syndrome: additional supportive evidence. Epilepsy Res. 2014;108(4):725–31.

    Google Scholar 

  68. Perez J, Chiron C, Musial C, Rey E, Blehaut H, d’Athis P, Vincent J, Dulac O. Stiripentol: efficacy and tolerability in children with epilepsy. Epilepsia. 1999;40(11):1618–26.

    CAS  PubMed  Google Scholar 

  69. De Liso P, Chemaly N, Laschet J, Barnerias C, Hully M, Leunen D, Desguerre I, Chiron C, Dulac O, Nabbout R. Patients with dravet syndrome in the era of stiripentol: a French cohort cross-sectional study. Epilepsy Res. 2016;125:42–6.

    PubMed  Google Scholar 

  70. Balestrini S, Sisodiya SM. Audit of use of stiripentol in adults with Dravet syndrome. Acta Neurol Scand. 2017;135:73–9.

    CAS  PubMed  Google Scholar 

  71. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, Fuks B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA. 2004;101(26):9861–6.

    CAS  PubMed  Google Scholar 

  72. Yang XF, Weisenfeld A, Rothman SM. Prolonged exposure to levetiracetam reveals a presynaptic effect on neurotransmission. Epilepsia. 2007;48(10):1861–9.

    CAS  PubMed  Google Scholar 

  73. Lukyanetz EA, Shkryl VM, Kostyuk PG. Selective blockade of N-type calcium channels by levetiracetam. Epilepsia. 2002;43(1):9–18.

    CAS  PubMed  Google Scholar 

  74. Niespodziany I, Klitgaard H, Margineanu DG. Levetiracetam inhibits the high-voltage-activated Ca(2 +) current in pyramidal neurones of rat hippocampal slices. Neurosci Lett. 2001;306(1–2):5–8.

    CAS  PubMed  Google Scholar 

  75. Avraham Y, Grigoriadis N, Poutahidis T, Vorobiev L, Magen I, Ilan Y, Mechoulam R, Berry E. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice. Br J Pharmacol. 2011;162(7):1650–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nicolas JM, Collart P, Gerin B, Mather G, Trager W, Levy R, Roba J. In vitro evaluation of potential drug interactions with levetiracetam, a new antiepileptic agent. Drug Metab Dispos. 1999;27(2):250–4.

    CAS  PubMed  Google Scholar 

  77. Browne TR, Szabo GK, Leppik IE, Josephs E, Paz J, Baltes E, Jensen CM. Absence of pharmacokinetic drug interaction of levetiracetam with phenytoin in patients with epilepsy determined by new technique. J Clin Pharmacol. 2000;40(6):590–5.

    CAS  PubMed  Google Scholar 

  78. Levy RH, Ragueneau-Majlessi I, Baltes E. Repeated administration of the novel antiepileptic agent levetiracetam does not alter digoxin pharmacokinetics and pharmacodynamics in healthy volunteers. Epilepsy Res. 2001;46(2):93–9.

    CAS  PubMed  Google Scholar 

  79. Patsalos PN. Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacol Ther. 2000;85(2):77–85.

    CAS  PubMed  Google Scholar 

  80. Ragueneau-Majlessi I, Levy RH, Janik F. Levetiracetam does not alter the pharmacokinetics of an oral contraceptive in healthy women. Epilepsia. 2002;43(7):697–702.

    CAS  PubMed  Google Scholar 

  81. Ragueneau-Majlessi I, Levy RH, Meyerhoff C. Lack of effect of repeated administration of levetiracetam on the pharmacodynamic and pharmacokinetic profiles of warfarin. Epilepsy Res. 2001;47(1–2):55–63.

    CAS  PubMed  Google Scholar 

  82. Abou-Khalil B, Lazenby B. Long-term experience with levetiracetam. Epileptic Disorders Int Epilepsy J Videotape. 2003;5(Suppl 1):S33–7.

    Google Scholar 

  83. Coupez R, Nicolas JM, Browne TR. Levetiracetam, a new antiepileptic agent: lack of in vitro and in vivo pharmacokinetic interaction with valproic acid. Epilepsia. 2003;44(2):171–8.

    CAS  PubMed  Google Scholar 

  84. Striano P, Coppola A, Pezzella M, Ciampa C, Specchio N, Ragona F, Mancardi MM, Gennaro E, Beccaria F, Capovilla G, et al. An open-label trial of levetiracetam in severe myoclonic epilepsy of infancy. Neurology. 2007;69(3):250–4.

    CAS  PubMed  Google Scholar 

  85. C L: Discussion. Lancet 1857:527-528.

  86. Friedlander WJ. The rise and fall of bromide therapy in epilepsy. Arch Neurol. 2000;57(12):1782–5.

    CAS  PubMed  Google Scholar 

  87. Osborne DR, Bohan T, Hodson A. CT demonstration of hyperdense cerebral vasculature due to bromide therapy. J Comput Assist Tomogr. 1984;8(5):982–4.

    CAS  PubMed  Google Scholar 

  88. Lotte J, Haberlandt E, Neubauer B, Staudt M, Kluger GJ. Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics. 2012;43(1):17–21.

    CAS  PubMed  Google Scholar 

  89. Tanabe T, Awaya Y, Matsuishi T, Iyoda K, Nagai T, Kurihara M, Yamamoto K, Minagawa K, Maekawa K. Management of and prophylaxis against status epilepticus in children with severe myoclonic epilepsy in infancy (SMEI; Dravet syndrome)–a nationwide questionnaire survey in Japan. Brain Dev. 2008;30(10):629–35.

    PubMed  Google Scholar 

  90. Seino M, Naruto S, Ito T, Miyazaki H. Zonisamide. In: Levy R, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press Ltd.; 1995. p. 1011–23.

    Google Scholar 

  91. Rubboli G, Tassinari CA. Negative myoclonus. An overview of its clinical features, pathophysiological mechanisms, and management. Neurophysiologie clinique. Clin Neurophysiol. 2006;36(5–6):337–43.

    CAS  Google Scholar 

  92. Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol. 1989;25(6):582–93.

    CAS  PubMed  Google Scholar 

  93. White HS. Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia. 1999;40(Suppl 5):S2–10.

    CAS  PubMed  Google Scholar 

  94. Gilbert JC, Wyllie MG. Proceedings: the effects of the anticonvulsant ethosuximide on adenosine triphosphatase activities of synaptosomes prepared from rat cerebral cortex. Br J Pharmacol. 1974;52(1):139P–40P.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Albright PS, Burnham WM. Development of a new pharmacological seizure model: effects of anticonvulsants on cortical- and amygdala-kindled seizures in the rat. Epilepsia. 1980;21(6):681–9.

    CAS  PubMed  Google Scholar 

  96. Giaccone M, Bartoli A, Gatti G, Marchiselli R, Pisani F, Latella MA, Perucca E. Effect of enzyme inducing anticonvulsants on ethosuximide pharmacokinetics in epileptic patients. Br J Clin Pharmacol. 1996;41(6):575–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y. Metabolic control of vesicular glutamate transport and release. Neuron. 2010;68(1):99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia. 2011;52(3):e7–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kang HC, Kim YJ, Kim DW, Kim HD. Efficacy and safety of the ketogenic diet for intractable childhood epilepsy: Korean multicentric experience. Epilepsia. 2005;46(2):272–9.

    CAS  PubMed  Google Scholar 

  100. Nabbout R, Copioli C, Chipaux M, Chemaly N, Desguerre I, Dulac O, Chiron C. Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: a prospective pilot study. Epilepsia. 2011;52(7):e54–7.

    PubMed  Google Scholar 

  101. Caraballo RH. Nonpharmacologic treatments of Dravet syndrome: focus on the ketogenic diet. Epilepsia. 2011;52(Suppl 2):79–82.

    PubMed  Google Scholar 

  102. Laux L, Blackford R. The ketogenic diet in Dravet syndrome. J Child Neurol. 2013;28(8):1041–4.

    PubMed  Google Scholar 

  103. Orosz I, McCormick D, Zamponi N, Varadkar S, Feucht M, Parain D, Griens R, Vallee L, Boon P, Rittey C, et al. Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children. Epilepsia. 2014;55(10):1576–84.

    PubMed  Google Scholar 

  104. Fulton SP, Van Poppel K, McGregor AL, Mudigoudar B, Wheless JW. Vagus nerve stimulation in intractable epilepsy associated with SCN1A gene abnormalities. J Child Neurol. 2017;32(5):494–8.

    PubMed  Google Scholar 

  105. Zamponi N, Passamonti C, Cappanera S, Petrelli C. Clinical course of young patients with Dravet syndrome after vagal nerve stimulation. Eur J Paediatr Neurol. 2011;15(1):8–14.

    PubMed  Google Scholar 

  106. Dlouhy BJ, Miller B, Jeong A, Bertrand ME, Limbrick DD Jr, Smyth MD. Palliative epilepsy surgery in Dravet syndrome-case series and review of the literature. Childs Nerv Syst. 2016;32(9):1703–8.

    PubMed  Google Scholar 

  107. Shahwan A, Bailey C, Maxiner W, Harvey AS. Vagus nerve stimulation for refractory epilepsy in children: more to VNS than seizure frequency reduction. Epilepsia. 2009;50(5):1220–8.

    PubMed  Google Scholar 

  108. Rossignol E, Lortie A, Thomas T, Bouthiller A, Scavarda D, Mercier C, Carmant L. Vagus nerve stimulation in pediatric epileptic syndromes. Seizure. 2009;18(1):34–7.

    CAS  PubMed  Google Scholar 

  109. Kang HC, Hwang YS, Kim DS, Kim HD. Vagus nerve stimulation in pediatric intractable epilepsy: a Korean bicentric study. Acta Neurochir Suppl. 2006;99:93–6.

    CAS  PubMed  Google Scholar 

  110. Dibue-Adjei M, Fischer I, Steiger HJ, Kamp MA. Efficacy of adjunctive vagus nerve stimulation in patients with Dravet syndrome: a meta-analysis of 68 patients. Seizure. 2017;50:147–52.

    PubMed  Google Scholar 

  111. Van Poppel K, Patay Z, Roberts D, Clarke DF, McGregor A, Perkins FF, Wheless JW. Mesial temporal sclerosis in a cohort of children with SCN1A gene mutation. J Child Neurol. 2012;27(7):893–7.

    PubMed  Google Scholar 

  112. Siegler Z, Barsi P, Neuwirth M, Jerney J, Kassay M, Janszky J, Paraicz E, Hegyi M, Fogarasi A. Hippocampal sclerosis in severe myoclonic epilepsy in infancy: a retrospective MRI study. Epilepsia. 2005;46(5):704–8.

    PubMed  Google Scholar 

  113. Striano P, Mancardi MM, Biancheri R, Madia F, Gennaro E, Paravidino R, Beccaria F, Capovilla G, Dalla Bernardina B, Darra F, et al. Brain MRI findings in severe myoclonic epilepsy in infancy and genotype-phenotype correlations. Epilepsia. 2007;48(6):1092–6.

    PubMed  Google Scholar 

  114. Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav E&B. 2015;45:49–52.

    Google Scholar 

  115. Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav E&B. 2013;29(3):574–7.

    Google Scholar 

  116. Treat L, Chapman KE, Colborn KL, Knupp KG. Duration of use of oral cannabis extract in a cohort of pediatric epilepsy patients. Epilepsia. 2017;58(1):123–7.

    CAS  PubMed  Google Scholar 

  117. Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, Hung P, Lerner JT, Sankar R. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: a potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy Behav E&B. 2015;47:138–41.

    Google Scholar 

  118. Public Health focus > 2016 Warning Letters and Test Results for Cannabidiol-Related Products [https://www.fda.gov/newsevents/publichealthfocus/ucm484109.htm]. Accessed 28 Nov 2017.

  119. Public Health Focus > 2015 Warning letters and test results for cannabidiol-related products. https://www.fda.gov/newsevents/publichealthfocus/ucm484109.htm. Accessed 28 Nov 2017.

  120. Vandrey R, Raber JC, Raber ME, Douglass B, Miller C, Bonn-Miller MO. Cannabinoid dose and label accuracy in edible medical cannabis products. JAMA. 2015;313(24):2491–3.

    CAS  PubMed  Google Scholar 

  121. Rosenberg EC, Tsien RW, Whalley BJ, Devinsky O. Cannabinoids and epilepsy. Neurotherapeutics. 2015;12:747–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30(8):1037–43.

    CAS  PubMed  Google Scholar 

  123. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152(7):1092–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mijangos-Moreno S, Poot-Ake A, Arankowsky-Sandoval G, Murillo-Rodriguez E. Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats. Neurosci Res. 2014;84:60–3.

    CAS  PubMed  Google Scholar 

  125. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B. Cannabidiol targets mitochondria to regulate intracellular Ca2 + levels. J Neurosci. 2009;29(7):2053–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Devinsky O, Cross JH, Wright S. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;377(7):699–700.

    PubMed  Google Scholar 

  127. Devinsky O, Nabbout R, Miller I, Laux L, Zolnowska M, Wright S, Roberts C: Maintenance of Long-Term Safety and Efficacy of Cannabidiol (CBD) Treatment in Dravet Syndrome (DS): results of the open-label extension (OLE) Trial (GWCARE 5). In: American Epilepsy Society Annual Meeting; Washington, DC. 2017.

  128. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, Miller I, Flamini R, Wilfong A, Filloux F, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15(3):270–8.

    CAS  PubMed  Google Scholar 

  129. Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56(8):1246–51.

    CAS  PubMed  Google Scholar 

  130. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci USA. 2017;114(42):11229–34.

    CAS  PubMed  Google Scholar 

  131. Martin P, Maurice T, Gammaitoni A, Farfel GM, Boyd B, Galer BS. Fenfluramine has in vivo activity as a positive allosteric modulator of sigma-1 receptors. In: American Epilepsy Society Annual Meeting; Washington, DC. 2017.

  132. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD, Schaff HV. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med. 1997;337(9):581–8.

    CAS  PubMed  Google Scholar 

  133. Mark EJ, Patalas ED, Chang HT, Evans RJ, Kessler SC. Fatal pulmonary hypertension associated with short-term use of fenfluramine and phentermine. N Engl J Med. 1997;337(9):602–6.

    CAS  PubMed  Google Scholar 

  134. Boel M, Casaer P. Add-on therapy of fenfluramine in intractable self-induced epilepsy. Neuropediatrics. 1996;27(4):171–3.

    CAS  PubMed  Google Scholar 

  135. Schoonjans AS, Marchau F, Paelinck BP, Lagae L, Gammaitoni A, Pringsheim M, Keane MG, Ceulemans B. Cardiovascular safety of low-dose fenfluramine in Dravet syndrome: a review of its benefit-risk profile in a new patient population. Curr Med Res Opin. 2017;33(10):1773–81.

    CAS  PubMed  Google Scholar 

  136. Lagae L, Sullivan JE, Cross JH, Devinsky O, Guerrini R, Meyer A, Knupp KG, Laux LC, Miller I, Nikanorova N et al: ZX008 (FENFLURAMINE) in dravet syndrome: results of a phase 3, randomized, double-blind, placebo-controlled trial. In: American Epilepsy Society Annual Meeting: 2017; Washington DC.

  137. Griffin A, Hamling KR, Knupp K, Hong S, Lee LP, Baraban SC. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain. 2017;140(3):669–83.

    PubMed  PubMed Central  Google Scholar 

  138. Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun. 2013;4:2410.

    PubMed  PubMed Central  Google Scholar 

  139. Luurtsema G, Molthoff CF, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJ. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood-brain barrier: kinetics and metabolism in the rat. Nucl Med Biol. 2005;32(1):87–93.

    CAS  PubMed  Google Scholar 

  140. Syvanen S, Hooker A, Rahman O, Wilking H, Blomquist G, Langstrom B, Bergstrom M, Hammarlund-Udenaes M. Pharmacokinetics of P-glycoprotein inhibition in the rat blood-brain barrier. J Pharm Sci. 2008;97(12):5386–400.

    PubMed  Google Scholar 

  141. Asadi-Pooya AA, Razavizadegan SM, Abdi-Ardekani A, Sperling MR. Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav E&B. 2013;29(1):150–4.

    Google Scholar 

  142. Iannetti P, Parisi P, Spalice A, Ruggieri M, Zara F. Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res. 2009;85(1):89–95.

    CAS  PubMed  Google Scholar 

  143. Borlot F, Wither RG, Ali A, Wu N, Verocai F, Andrade DM. A pilot double-blind trial using verapamil as adjuvant therapy for refractory seizures. Epilepsy Res. 2014;108(9):1642–51.

    CAS  PubMed  Google Scholar 

  144. Nicita F, Spalice A, Papetti L, Nikanorova M, Iannetti P, Parisi P. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure. 2014;23(1):36–40.

    PubMed  Google Scholar 

  145. Wong JC, Dutton SB, Collins SD, Schachter S, Escayg A. Huperzine a provides robust and sustained protection against induced seizures in Scn1a mutant mice. Front Pharmacol. 2016;7:357.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Dinday MT, Baraban SC. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet syndrome. eNeuro. 2015;2(4):ENEURO.0068-15.2015.

    PubMed  PubMed Central  Google Scholar 

  147. Oguni H, Hayashi K, Awaya Y, Fukuyama Y, Osawa M. Severe myoclonic epilepsy in infants—a review based on the Tokyo Women’s Medical University series of 84 cases. Brain Dev. 2001;23(7):736–48.

    CAS  PubMed  Google Scholar 

  148. Brigo F, Nardone R, Tezzon F, Trinka E. Nonintravenous midazolam versus intravenous or rectal diazepam for the treatment of early status epilepticus: a systematic review with meta-analysis. Epilepsy Behav E&B. 2015;49:325–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine C. Wirrell.

Ethics declarations

Funding

No sources of funding were used to prepare this manuscript.

Conflict of interest

Drs. Knupp and Wirrell have been involved with clinical studies of fenfluramine but received no personal remuneration from Zogenix Pharma. Dr. Wirrell has been involved in clinical studies of cannabidiol in DS but has received no personal remuneration from Greenwich Pharma. Both Drs. Knupp and Wirrell are on the Medical Advisory Board of the Dravet Syndrome Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knupp, K.G., Wirrell, E.C. Treatment Strategies for Dravet Syndrome. CNS Drugs 32, 335–350 (2018). https://doi.org/10.1007/s40263-018-0511-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-018-0511-y

Navigation