Skip to main content
Log in

Pharmacogenetics and Imaging–Pharmacogenetics of Antidepressant Response: Towards Translational Strategies

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging–pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging–pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging–pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575–86.

    Article  PubMed  Google Scholar 

  2. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10(11):e1001547.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40.

    Article  PubMed  Google Scholar 

  4. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.

    Article  PubMed  Google Scholar 

  5. Souery D, Papakostas GI, Trivedi MH. Treatment-resistant depression. J Clin Psychiatry. 2006;67(Suppl 6):16–22.

    PubMed  Google Scholar 

  6. Ho SC, Chong HY, Chaiyakunapruk N, Tangiisuran B, Jacob SA. Clinical and economic impact of non-adherence to antidepressants in major depressive disorder: a systematic review. J Affect Disord. 2016;15(193):1–10.

    Article  Google Scholar 

  7. Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373(9665):746–58.

    Article  CAS  PubMed  Google Scholar 

  8. Papakostas GI, Fava M. Predictors, moderators, and mediators (correlates) of treatment outcome in major depressive disorder. Dialog Clin Neurosci. 2008;10(4):439–51.

    Google Scholar 

  9. Kudlow PA, McIntyre RS, Lam RW. Early switching strategies in antidepressant non-responders: current evidence and future research directions. CNS Drugs. 2014;28(7):601–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–62.

    Article  CAS  PubMed  Google Scholar 

  11. Tansey KE, Guipponi M, Hu X, Domenici E, Lewis G, Malafosse A, et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry. 2013;73(7):679–82.

    Article  CAS  PubMed  Google Scholar 

  12. Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet Part B Neuropsychiatr Genet. 2013;162B(6):487–520.

    Article  CAS  Google Scholar 

  13. Rabl U, Scharinger C, Muller M, Pezawas L. Imaging genetics: implications for research on variable antidepressant drug response. Expert Rev Clin Pharmacol. 2010;3(4):471–89.

    Article  CAS  PubMed  Google Scholar 

  14. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2011;36(1):183–206.

    Article  Google Scholar 

  15. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Human Brain Mapp. 2008;29(6):683–95.

    Article  Google Scholar 

  16. Dichter GS, Gibbs D, Smoski MJ. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord. 2015;1(172):8–17.

    Article  Google Scholar 

  17. Gvozdic K, Brandl EJ, Taylor DL, Muller DJ. Genetics and personalized medicine in antidepressant treatment. Curr Pharm Des. 2012;18(36):5853–78.

    Article  CAS  PubMed  Google Scholar 

  18. Fabbri C, Porcelli S, Serretti A. From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. Can J Psychiatry Rev Can de Psychiatrie. 2014;59(2):62–75.

    Google Scholar 

  19. Fabbri C, Serretti A. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep. 2015;17(7):50.

    Article  PubMed  Google Scholar 

  20. Lin E, Lane HY. Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics. 2015;16(5):555–66.

    Article  CAS  PubMed  Google Scholar 

  21. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40(2):288–95.

    CAS  PubMed  Google Scholar 

  22. Fava M, Kendler KS. Major depressive disorder. Neuron. 2000;28(2):335–41.

    Article  CAS  PubMed  Google Scholar 

  23. Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M, et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study. Biol Psychiatry. 2007;62(4):327–31.

    Article  CAS  PubMed  Google Scholar 

  24. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012;22(4):239–58.

    Article  CAS  Google Scholar 

  25. Serretti A, Kato M, De Ronchi D, Kinoshita T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry. 2007;12(3):247–57.

    CAS  PubMed  Google Scholar 

  26. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010;15(5):473–500.

    Article  CAS  PubMed  Google Scholar 

  27. Shiroma PR, Drews MS, Geske JR, Mrazek DA. SLC6A4 polymorphisms and age of onset in late-life depression on treatment outcomes with citalopram: a Sequenced Treatment Alternatives to Relieve Depression (STAR*D) report. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry. 2014;22(11):1140–8.

    Article  Google Scholar 

  28. Staeker J, Leucht S, Laika B, Steimer W. Polymorphisms in serotonergic pathways influence the outcome of antidepressant therapy in psychiatric inpatients. Genet Test Mol Biomark. 2014;18(1):20–31.

    Article  CAS  Google Scholar 

  29. Sahraian S, Babashams M, Reza-Soltani P, Najmabadi H, Kahrizi K, Gorgani SH. Serotonin transporter polymorphism (5-HTTLPR) and citalopram effectiveness in Iranian patients with major depressive disorder. Iran J Psychiatry. 2013;8(2):86–91.

    PubMed  PubMed Central  Google Scholar 

  30. Rotberg B, Kronenberg S, Carmel M, Frisch A, Brent D, Zalsman G, et al. Additive effects of 5-HTTLPR (serotonin transporter) and tryptophan hydroxylase 2 G-703T gene polymorphisms on the clinical response to citalopram among children and adolescents with depression and anxiety disorders. J Child Adolesc Psychopharmacol. 2013;23(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor MJ, Sen S, Bhagwagar Z. Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol Psychiatry. 2010;68(6):536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andre K, Kampman O, Illi A, Viikki M, Setala-Soikkeli E, Mononen N, et al. SERT and NET polymorphisms, temperament and antidepressant response. Nordic J Psychiatry. 2015;69(7):531–8.

    Article  Google Scholar 

  33. Poland RE, Lesser IM, Wan YJ, Gertsik L, Yao J, Raffel LJ, et al. Response to citalopram is not associated with SLC6A4 genotype in African-Americans and Caucasians with major depression. Life Sci. 2013;92(20–21):967–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bousman CA, Sarris J, Won ES, Chang HS, Singh A, Lee HY, et al. Escitalopram efficacy in depression: a cross-ethnicity examination of the serotonin transporter promoter polymorphism. J Clin Psychopharmacol. 2014;34(5):645–8.

    Article  CAS  PubMed  Google Scholar 

  35. Mrazek DA, Rush AJ, Biernacka JM, O’Kane DJ, Cunningham JM, Wieben ED, et al. SLC6A4 variation and citalopram response. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2009;150B(3):341–51.

    Article  CAS  Google Scholar 

  36. Seripa D, Pilotto A, Paroni G, Fontana A, D’Onofrio G, Gravina C, et al. Role of the serotonin transporter gene locus in the response to SSRI treatment of major depressive disorder in late life. J Psychopharmacol. 2015;29(5):623–33.

    Article  CAS  PubMed  Google Scholar 

  37. Proft F, Kopf J, Olmes D, Hempel S, Schmidt B, Riederer P, et al. SLC6A2 and SLC6A4 variants interact with venlafaxine serum concentrations to influence therapy outcome. Pharmacopsychiatry. 2014;47(7):245–50.

    Article  CAS  PubMed  Google Scholar 

  38. Won ES, Chang HS, Lee HY, Ham BJ, Lee MS. Association between serotonin transporter-linked polymorphic region and escitalopram antidepressant treatment response in Korean patients with major depressive disorder. Neuropsychobiology. 2012;66(4):221–9.

    Article  CAS  PubMed  Google Scholar 

  39. Myung W, Lim SW, Kim S, Kim H, Chung JW, Seo MY, et al. Serotonin transporter genotype and function in relation to antidepressant response in Koreans. Psychopharmacology. 2013;225(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  40. Kim H, Lim SW, Kim S, Kim JW, Chang YH, Carroll BJ, et al. Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. Jama. 2006;296(13):1609–18.

    Article  CAS  PubMed  Google Scholar 

  41. Popp J, Leucht S, Heres S, Steimer W. Serotonin transporter polymorphisms and side effects in antidepressant therapy—a pilot study. Pharmacogenomics. 2006;7(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  42. Rundell JR, Staab JP, Shinozaki G, McAlpine D. Serotonin transporter gene promotor polymorphism (5-HTTLPR) associations with number of psychotropic medication trials in a tertiary care outpatient psychiatric consultation practice. Psychosomatics. 2011;52(2):147–53.

    Article  PubMed  Google Scholar 

  43. Fernandes BS, Hodge JM, Pasco JA, Berk M, Williams LJ. Effects of depression and serotonergic antidepressants on bone: mechanisms and implications for the treatment of depression. Drugs Aging. 2016;33(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  44. Garfield LD, Muller DJ, Kennedy JL, Mulsant BH, Reynolds CF 3rd, Teitelbaum SL, et al. Genetic variation in the serotonin transporter and HTR1B receptor predicts reduced bone formation during serotonin reuptake inhibitor treatment in older adults. World J Biol Psychiatry. 2014;15(5):404–10.

    Article  PubMed  Google Scholar 

  45. Crawford AA, Lewis G, Lewis SJ, Munafo MR. Systematic review and meta-analysis of serotonin transporter genotype and discontinuation from antidepressant treatment. Eur Neuropsychopharmacol. 2013;23(10):1143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daray FM, Thommi SB, Ghaemi SN. The pharmacogenetics of antidepressant-induced mania: a systematic review and meta-analysis. Bipolar Disord. 2010;12(7):702–6.

    Article  PubMed  Google Scholar 

  47. Biernacka JM, McElroy SL, Crow S, Sharp A, Benitez J, Veldic M, et al. Pharmacogenomics of antidepressant induced mania: a review and meta-analysis of the serotonin transporter gene (5HTTLPR) association. J Affect Disord. 2012;136(1–2):e21–9.

    Article  CAS  PubMed  Google Scholar 

  48. Frye MA, McElroy SL, Prieto ML, Harper KL, Walker DL, Kung S, et al. Clinical risk factors and serotonin transporter gene variants associated with antidepressant-induced mania. J Clin Psychiatry. 2015;76(2):174–80.

    Article  PubMed  Google Scholar 

  49. Dreimuller N, Tadic A, Dragicevic A, Boland K, Bondy B, Lieb K, et al. The serotonin transporter promoter polymorphism (5-HTTLPR) affects the relation between antidepressant serum concentrations and effectiveness in major depression. Pharmacopsychiatry. 2012;45(3):108–13.

    Article  CAS  PubMed  Google Scholar 

  50. Keers R, Uher R, Huezo-Diaz P, Smith R, Jaffee S, Rietschel M, et al. Interaction between serotonin transporter gene variants and life events predicts response to antidepressants in the GENDEP project. Pharmacogenomics J. 2011;11(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  51. Mandelli L, Mazza M, Martinotti G, Di Nicola M, Tavian D, Colombo E, et al. Harm avoidance moderates the influence of serotonin transporter gene variants on treatment outcome in bipolar patients. J Affect Disord. 2009;119(1–3):205–9.

    Article  CAS  PubMed  Google Scholar 

  52. Daniele A, Divella R, Paradiso A, Mattioli V, Romito F, Giotta F, et al. Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: causes and treatment with antidepressant. In vivo. 2011;25(6):895–901.

    CAS  PubMed  Google Scholar 

  53. Murphy DL, Moya PR. Human serotonin transporter gene (SLC6A4) variants: their contributions to understanding pharmacogenomic and other functional GxG and GxE differences in health and disease. Curr Opin Pharmacol. 2011;11(1):3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Niitsu T, Fabbri C, Bentini F, Serretti A. Pharmacogenetics in major depression: a comprehensive meta-analysis. Progr Neuro-psychopharmacol Biol Psychiatry. 2013;1(45):183–94.

    Article  CAS  Google Scholar 

  55. Wilkie MJ, Smith G, Day RK, Matthews K, Smith D, Blackwood D, et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J. 2009;9(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  56. Dogan O, Yuksel N, Ergun MA, Yilmaz A, Ilhan MN, Karslioglu HE, et al. Serotonin transporter gene polymorphisms and sertraline response in major depression patients. Genet Test. 2008;12(2):225–31.

    Article  CAS  PubMed  Google Scholar 

  57. Smits KM, Smits LJ, Peeters FP, Schouten JS, Janssen RG, Smeets HJ, et al. The influence of 5-HTTLPR and STin2 polymorphisms in the serotonin transporter gene on treatment effect of selective serotonin reuptake inhibitors in depressive patients. Psychiatr Genet. 2008;18(4):184–90.

    Article  PubMed  Google Scholar 

  58. Ito K, Yoshida K, Sato K, Takahashi H, Kamata M, Higuchi H, et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res. 2002;111(2–3):235–9.

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto Y, Fabbri C, Pellegrini S, Porcelli S, Politi P, Bellino S, et al. Serotonin transporter gene: a new polymorphism may affect response to antidepressant treatments in major depressive disorder. Mol Diagn Therapy. 2014;18(5):567–77.

    Article  CAS  Google Scholar 

  60. Donaldson ZR, le Francois B, Santos TL, Almli LM, Boldrini M, Champagne FA, et al. The functional serotonin 1a receptor promoter polymorphism, rs6295, is associated with psychiatric illness and differences in transcription. Transl Psychiatry. 2016;6:e746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong CJ, Chen TJ, Yu YW, Tsai SJ. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J. 2006;6(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  62. Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol. 2006;16(7):498–503.

    Article  CAS  PubMed  Google Scholar 

  63. Villafuerte SM, Vallabhaneni K, Sliwerska E, McMahon FJ, Young EA, Burmeister M. SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatr Genet. 2009;19(6):281–91.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2009;150B(1):115–23.

    Article  CAS  Google Scholar 

  65. Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. Evidence for a combined genetic effect of the 5-HT(1A) receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J Psychopharmacol. 2005;19(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao X, Huang Y, Li J, Ma H, Jin Q, Wang Y, et al. Association between the 5-HT1A receptor gene polymorphism (rs6295) and antidepressants: a meta-analysis. Int Clin Psychopharmacol. 2012;27(6):314–20.

    PubMed  Google Scholar 

  67. Chang HS, Lee HY, Cha JH, Won ES, Ham BJ, Kim B, et al. Interaction of 5-HTT and HTR1A gene polymorphisms in treatment responses to mirtazapine in patients with major depressive disorder. J Clin Psychopharmacol. 2014;34(4):446–54.

    Article  CAS  PubMed  Google Scholar 

  68. Xu Z, Zhang Z, Shi Y, Pu M, Yuan Y, Zhang X, et al. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J Psychopharmacol. 2012;26(3):349–59.

    Article  CAS  PubMed  Google Scholar 

  69. Perroud N, Bondolfi G, Uher R, Gex-Fabry M, Aubry JM, Bertschy G, et al. Clinical and genetic correlates of suicidal ideation during antidepressant treatment in a depressed outpatient sample. Pharmacogenomics. 2011;12(3):365–77.

    Article  PubMed  Google Scholar 

  70. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Human Genet. 2006;78(5):804–14.

    Article  CAS  Google Scholar 

  71. Peters EJ, Slager SL, Jenkins GD, Reinalda MS, Garriock HA, Shyn SI, et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genom. 2009;19(1):1–10.

    Article  CAS  Google Scholar 

  72. Noro M, Antonijevic I, Forray C, Kasper S, Kocabas NA, Lecrubier Y, et al. 5HT1A and 5HT2A receptor genes in treatment response phenotypes in major depressive disorder. Int Clin Psychopharmacol. 2010;25(4):228–31.

    Article  PubMed  Google Scholar 

  73. Illi A, Setala-Soikkeli E, Viikki M, Poutanen O, Huhtala H, Mononen N, et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport. 2009;20(12):1125–8.

    CAS  PubMed  Google Scholar 

  74. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, et al. HTR2A is associated with SSRI response in major depressive disorder in a Japanese cohort. Neuromol Med. 2010;12(3):237–42.

    Article  CAS  Google Scholar 

  75. Antypa N, Calati R, Souery D, Pellegrini S, Sentissi O, Amital D, et al. Variation in the HTR1A and HTR2A genes and social adjustment in depressed patients. J Affect Disord. 2013;150(2):649–52.

    Article  CAS  PubMed  Google Scholar 

  76. Serretti A, Fabbri C, Pellegrini S, Porcelli S, Politi P, Bellino S, et al. No effect of serotoninergic gene variants on response to interpersonal counseling and antidepressants in major depression. Psychiatry Investig. 2013;10(2):180–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lucae S, Ising M, Horstmann S, Baune BT, Arolt V, Muller-Myhsok B, et al. HTR2A gene variation is involved in antidepressant treatment response. Eur Neuropsychopharmacol. 2010;20(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  78. Lin JY, Jiang MY, Kan ZM, Chu Y. Influence of 5-HTR2A genetic polymorphisms on the efficacy of antidepressants in the treatment of major depressive disorder: a meta-analysis. J Affect Disord. 2014;168:430–8.

    Article  CAS  PubMed  Google Scholar 

  79. Falkenberg VR, Gurbaxani BM, Unger ER, Rajeevan MS. Functional genomics of serotonin receptor 2A (HTR2A): interaction of polymorphism, methylation, expression and disease association. Neuromol Med. 2011;13(1):66–76.

    Article  CAS  Google Scholar 

  80. Basu A, Chadda RK, Sood M, Kaur H, Kukreti R. Association of serotonin transporter (SLC6A4) & receptor (5HTR1A, 5HTR2A) polymorphisms with response to treatment with escitalopram in patients with major depressive disorder: a preliminary study. Indian J Med Res. 2015;142(1):40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Noordam R, Direk N, Sitlani CM, Aarts N, Tiemeier H, Hofman A, et al. Identifying genetic loci associated with antidepressant drug response with drug–gene interaction models in a population-based study. J Psychiatr Res. 2015;62:31–7.

    Article  PubMed  Google Scholar 

  82. Kautzky A, Baldinger P, Souery D, Montgomery S, Mendlewicz J, Zohar J, et al. The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur Neuropsychopharmacol. 2015;25(4):441–53.

    Article  CAS  PubMed  Google Scholar 

  83. Uher R, Huezo-Diaz P, Perroud N, Smith R, Rietschel M, Mors O, et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 2009;9(4):225–33.

    Article  CAS  PubMed  Google Scholar 

  84. Tiwari AK, Zai CC, Sajeev G, Arenovich T, Muller DJ, Kennedy JL. Analysis of 34 candidate genes in bupropion and placebo remission. Int J Neuropsychopharmacol. 2013;16(4):771–81.

    Article  CAS  PubMed  Google Scholar 

  85. Qesseveur G, Petit AC, Nguyen HT, Dahan L, Colle R, Rotenberg S, et al. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: a translational approach. Neuropharmacology. 2016;105:142–53.

    Article  CAS  PubMed  Google Scholar 

  86. Kim YG, Chang HS, Won ES, Ham BJ, Lee MS. Serotonin-related polymorphisms in TPH1 and HTR5A genes are not associated with escitalopram treatment response in Korean patients with major depression. Neuropsychobiology. 2014;69(4):210–9.

    Article  CAS  PubMed  Google Scholar 

  87. Hodgson K, Uher R, Crawford AA, Lewis G, O’Donovan MC, Keers R, et al. Genetic predictors of antidepressant side effects: a grouped candidate gene approach in the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. J Psychopharmacol. 2014;28(2):142–50.

    Article  CAS  PubMed  Google Scholar 

  88. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E. Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol. 2001;11(5):375–80.

    Article  CAS  PubMed  Google Scholar 

  89. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry. 2001;6(5):586–92.

    Article  CAS  PubMed  Google Scholar 

  90. Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry. 2004;9(9):879–89.

    Article  CAS  PubMed  Google Scholar 

  91. Yin L, Zhang YY, Zhang X, Yu T, He G, Sun XL. TPH, SLC6A2, SLC6A3, DRD2 and DRD4 polymorphisms and neuroendocrine factors predict SSRIs treatment outcome in the Chinese population with major depression. Pharmacopsychiatry. 2015;48(3):95–103.

    Article  CAS  PubMed  Google Scholar 

  92. Bjorkholm C, Monteggia LM. BDNF—a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–9.

    Article  PubMed  CAS  Google Scholar 

  93. Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry. 2015;20(8):916–30.

    Article  CAS  PubMed  Google Scholar 

  94. Yan T, Wang L, Kuang W, Xu J, Li S, Chen J, et al. Brain-derived neurotrophic factor Val66Met polymorphism association with antidepressant efficacy: a systematic review and meta-analysis. Asia-Pacific Psychiatry. 2014;6(3):241–51.

    Article  PubMed  Google Scholar 

  95. Colle R, Gressier F, Verstuyft C, Deflesselle E, Lepine JP, Ferreri F, et al. Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J Affect Disord. 2015;1(175):233–40.

    Article  CAS  Google Scholar 

  96. Mandelli L, Emiliani R, Porcelli S, Fabbri C, Albani D, Serretti A. Genes involved in neuroplasticity and stressful life events act on the short-term response to antidepressant treatment: a complex interplay between genetics and environment. Human Psychopharmacol. 2014;29(4):388–91.

    Article  CAS  Google Scholar 

  97. Murphy GM Jr, Sarginson JE, Ryan HS, O’Hara R, Schatzberg AF, Lazzeroni LC. BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genom. 2013;23(6):301–13.

    Article  CAS  Google Scholar 

  98. Musil R, Zill P, Seemuller F, Bondy B, Obermeier M, Spellmann I, et al. No influence of brain-derived neurotrophic factor (BDNF) polymorphisms on treatment response in a naturalistic sample of patients with major depression. Eur Arch Psychiatry Clin Neurosci. 2013;263(5):405–12.

    Article  PubMed  Google Scholar 

  99. Hennings JM, Kohli MA, Czamara D, Giese M, Eckert A, Wolf C, et al. Possible associations of NTRK2 polymorphisms with antidepressant treatment outcome: findings from an extended tag SNP approach. PloS One. 2013;8(6):e64947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Z, Zhang Y, Wang Z, Chen J, Fan J, Guan Y, et al. The role of BDNF, NTRK2 gene and their interaction in development of treatment-resistant depression: data from multicenter, prospective, longitudinal clinic practice. J Psychiatr Res. 2013;47(1):8–14.

    Article  PubMed  Google Scholar 

  101. Tsai SJ, Hong CJ, Liou YJ. Effects of BDNF polymorphisms on antidepressant action. Psychiatry Investig. 2010;7(4):236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Notaras M, Hill R, Gogos JA, van den Buuse M. BDNF Val66Met genotype determines hippocampus-dependent behavior via sensitivity to glucocorticoid signaling. Mol Psychiatry. 2016;21(6):730–2.

    Article  CAS  PubMed  Google Scholar 

  103. Illi A, Viikki M, Poutanen O, Setala-Soikkeli E, Nuolivirta T, Kampman O, et al. No support for a role for BDNF gene polymorphisms rs11030101 and rs61888800 in major depressive disorder or antidepressant response in patients of Finnish origin. Psychiatr Genet. 2013;23(1):33–5.

    Article  CAS  PubMed  Google Scholar 

  104. Willour VL, Chen H, Toolan J, Belmonte P, Cutler DJ, Goes FS, et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry. 2009;14(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  105. Lahti J, Ala-Mikkula H, Kajantie E, Haljas K, Eriksson JG, Raikkonen K. Associations between self-reported and objectively recorded early life stress, FKBP5 polymorphisms, and depressive symptoms in midlife. Biol Psychiatry. 2015. doi:10.1016/j.biopsych.2015.10.022.

    Google Scholar 

  106. Luijk MP, Velders FP, Tharner A, van Ijzendoorn MH, Bakermans-Kranenburg MJ, Jaddoe VW, et al. FKBP5 and resistant attachment predict cortisol reactivity in infants: gene–environment interaction. Psychoneuroendocrinology. 2010;35(10):1454–61.

    Article  CAS  PubMed  Google Scholar 

  107. O’Leary JC 3rd, Dharia S, Blair LJ, Brady S, Johnson AG, Peters M, et al. A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PloS One. 2011;6(9):e24840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Guidotti G, Calabrese F, Anacker C, Racagni G, Pariante CM, Riva MA. Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacology. 2013;38(4):616–27.

    Article  CAS  PubMed  Google Scholar 

  109. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38(3):377–85.

    Article  CAS  PubMed  Google Scholar 

  110. Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G, et al. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol. 2015;11(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  111. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319–25.

    Article  CAS  PubMed  Google Scholar 

  112. Horstmann S, Lucae S, Menke A, Hennings JM, Ising M, Roeske D, et al. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology. 2010;35(3):727–40.

    Article  CAS  PubMed  Google Scholar 

  113. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord. 2007;104(1–3):83–90.

    Article  CAS  PubMed  Google Scholar 

  114. Tsai SJ, Hong CJ, Chen TJ, Yu YW. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet Part B Neuropsychiatr Genet. 2007;144B(8):1097–8.

    Article  CAS  Google Scholar 

  115. Sarginson JE, Lazzeroni LC, Ryan HS, Schatzberg AF, Murphy GM Jr. FKBP5 polymorphisms and antidepressant response in geriatric depression. Am J Med Genet Part B Neuropsychiatr Genet. 2010;153B(2):554–60.

    CAS  Google Scholar 

  116. Brent D, Melhem N, Ferrell R, Emslie G, Wagner KD, Ryan N, et al. Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. Am J Psychiatry. 2010;167(2):190–7.

    Article  PubMed  Google Scholar 

  117. Kirchheiner J, Lorch R, Lebedeva E, Seeringer A, Roots I, Sasse J, et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics. 2008;9(7):841–6.

    Article  CAS  PubMed  Google Scholar 

  118. Stamm TJ, Rampp C, Wiethoff K, Stingl J, Mössner R, O′Malley G, et al. The FKBP5 polymorphism rs1360780 influences the effect of an algorithm-based antidepressant treatment and is associated with remission in patients with major depression. J Psychopharmacol. 2016;30(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  119. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, et al. The FKBP5-gene in depression and treatment response—an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 2008;63(12):1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ellsworth KA, Moon I, Eckloff BW, Fridley BL, Jenkins GD, Batzler A, et al. FKBP5 genetic variation: association with selective serotonin reuptake inhibitor treatment outcomes in major depressive disorder. Pharmacogenet Genom. 2013;23(3):156–66.

    Article  CAS  Google Scholar 

  121. Zobel A, Schuhmacher A, Jessen F, Hofels S, von Widdern O, Metten M, et al. DNA sequence variants of the FKBP5 gene are associated with unipolar depression. Int J Neuropsychopharmacol. 2010;13(5):649–60.

    Article  CAS  PubMed  Google Scholar 

  122. Zou YF, Wang F, Feng XL, Li WF, Tao JH, Pan FM, et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci Lett. 2010;484(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  123. Keers R, Bonvicini C, Scassellati C, Uher R, Placentino A, Giovannini C, et al. Variation in GNB3 predicts response and adverse reactions to antidepressants. J Psychopharmacol. 2011;25(7):867–74.

    Article  CAS  PubMed  Google Scholar 

  124. Lin E, Chen PS, Chang HH, Gean PW, Tsai HC, Yang YK, et al. Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Progr Neuro-psychopharmacol Biol Psychiatry. 2009;33(7):1167–72.

    Article  CAS  Google Scholar 

  125. Wilkie MJ, Smith D, Reid IC, Day RK, Matthews K, Wolf CR, et al. A splice site polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression. Pharmacogenet Genom. 2007;17(3):207–15.

    Article  CAS  Google Scholar 

  126. Lee HJ, Cha JH, Ham BJ, Han CS, Kim YK, Lee SH, et al. Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J. 2004;4(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  127. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D, et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol. 2003;13(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  128. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M, et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport. 2000;11(9):1893–7.

    Article  CAS  PubMed  Google Scholar 

  129. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  130. Hu Q, Zhang SY, Liu F, Zhang XJ, Cui GC, Yu EQ, et al. Influence of GNB3 C825T polymorphism on the efficacy of antidepressants in the treatment of major depressive disorder: a meta-analysis. J Affect Disord. 2015;1(172):103–9.

    Article  CAS  Google Scholar 

  131. Kato M, Wakeno M, Okugawa G, Fukuda T, Takekita Y, Hosoi Y, et al. Antidepressant response and intolerance to SSRI is not influenced by G-protein beta3 subunit gene C825T polymorphism in Japanese major depressive patients. Progr Neuro-psychopharmacol Biol Psychiatry. 2008;32(4):1041–4.

    Article  CAS  Google Scholar 

  132. Kang RH, Hahn SW, Choi MJ, Lee MS. Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression. Neuropsychobiology. 2007;56(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  133. Joyce PR, Mulder RT, Luty SE, McKenzie JM, Miller AL, Rogers GR, et al. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol. 2003;6(4):339–46.

    Article  CAS  PubMed  Google Scholar 

  134. Kawaguchi DM, Glatt SJ. GRIK4 polymorphism and its association with antidepressant response in depressed patients: a meta-analysis. Pharmacogenomics. 2014;15(11):1451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Paddock S, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry. 2007;164(8):1181–8.

    Article  PubMed  Google Scholar 

  136. Milanesi E, Bonvicini C, Congiu C, Bortolomasi M, Gainelli G, Gennarelli M, et al. The role of GRIK4 gene in treatment-resistant depression. Genet Res (Camb). 2015;97:e14.

    Article  PubMed  CAS  Google Scholar 

  137. Pu M, Zhang Z, Xu Z, Shi Y, Geng L, Yuan Y, et al. Influence of genetic polymorphisms in the glutamatergic and GABAergic systems and their interactions with environmental stressors on antidepressant response. Pharmacogenomics. 2013;14(3):277–88.

    Article  CAS  PubMed  Google Scholar 

  138. Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry. 2010;67(11):1110–3.

    Article  CAS  PubMed  Google Scholar 

  139. Serretti A, Chiesa A, Crisafulli C, Massat I, Linotte S, Calati R, et al. Failure to replicate influence of GRIK4 and GNB3 polymorphisms on treatment outcome in major depression. Neuropsychobiology. 2012;65(2):70–5.

    Article  CAS  PubMed  Google Scholar 

  140. Vulink NC, Westenberg HG, van Nieuwerburgh F, Deforce D, Fluitman SB, Meinardi JS, et al. Catechol-O-methyltranferase gene expression is associated with response to citalopram in obsessive-compulsive disorder. Int J Psychiatry Clin Pract. 2012;16(4):277–83.

    Article  CAS  PubMed  Google Scholar 

  141. Spronk D, Arns M, Barnett KJ, Cooper NJ, Gordon E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disord. 2011;128(1–2):41–8.

    Article  CAS  PubMed  Google Scholar 

  142. Benedetti F, Dallaspezia S, Colombo C, Lorenzi C, Pirovano A, Smeraldi E. Effect of catechol-O-methyltransferase Val(108/158)Met polymorphism on antidepressant efficacy of fluvoxamine. Eur Psychiatry. 2010;25(8):476–8.

    Article  CAS  PubMed  Google Scholar 

  143. Baune BT, Hohoff C, Berger K, Neumann A, Mortensen S, Roehrs T, et al. Association of the COMT val158met variant with antidepressant treatment response in major depression. Neuropsychopharmacology. 2008;33(4):924–32.

    Article  CAS  PubMed  Google Scholar 

  144. Arias B, Serretti A, Lorenzi C, Gasto C, Catalan R, Fananas L. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J Affect Disord. 2006;90(2–3):251–6.

    Article  CAS  PubMed  Google Scholar 

  145. Szegedi A, Rujescu D, Tadic A, Muller MJ, Kohnen R, Stassen HH, et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J. 2005;5(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  146. Chiesa A, Lia L, Alberti S, Lee SJ, Han C, Patkar AA, et al. Lack of influence of rs4680 (COMT) and rs6276 (DRD2) on diagnosis and clinical outcomes in patients with major depression. Int J Psychiatry Clin Pract. 2014;18(2):97–102.

    Article  PubMed  Google Scholar 

  147. Gudayol-Ferre E, Herrera-Guzman I, Camarena B, Cortes-Penagos C, Herrera-Abarca JE, Martinez-Medina P, et al. The role of clinical variables, neuropsychological performance and SLC6A4 and COMT gene polymorphisms on the prediction of early response to fluoxetine in major depressive disorder. J Affect Disord. 2010;127(1–3):343–51.

    Article  CAS  PubMed  Google Scholar 

  148. Narasimhan S, Aquino TD, Multani PK, Rickels K, Lohoff FW. Variation in the catechol-O-methyltransferase (COMT) gene and treatment response to venlafaxine XR in generalized anxiety disorder. Psychiatry Res. 2012;198(1):112–5.

    Article  CAS  PubMed  Google Scholar 

  149. Illi A, Setala-Soikkeli E, Kampman O, Viikki M, Nuolivirta T, Poutanen O, et al. Catechol-O-methyltransferase val108/158met genotype, major depressive disorder and response to selective serotonin reuptake inhibitors in major depressive disorder. Psychiatry Res. 2010;176(1):85–7.

    Article  CAS  PubMed  Google Scholar 

  150. Xu Z, Zhang Z, Shi Y, Pu M, Yuan Y, Zhang X, et al. Influence and interaction of genetic polymorphisms in catecholamine neurotransmitter systems and early life stress on antidepressant drug response. J Affect Disord. 2011;133(1–2):165–73.

    Article  CAS  PubMed  Google Scholar 

  151. Kocabas NA, Faghel C, Barreto M, Kasper S, Linotte S, Mendlewicz J, et al. The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case-control association study. Int Clin Psychopharmacol. 2010;25(4):218–27.

    Article  PubMed  Google Scholar 

  152. Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol Psychiatry. 2009;65(9):785–91.

    Article  CAS  PubMed  Google Scholar 

  153. Ji Y, Biernacka J, Snyder K, Drews M, Pelleymounter LL, Colby C, et al. Catechol O-methyltransferase pharmacogenomics and selective serotonin reuptake inhibitor response. Pharmacogenomics J. 2012;12(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  154. Schosser A, Calati R, Serretti A, Massat I, Kocabas NA, Papageorgiou K, et al. The impact of COMT gene polymorphisms on suicidality in treatment resistant major depressive disorder—a European multicenter study. Eur Neuropsychopharmacol. 2012;22(4):259–66.

    Article  CAS  PubMed  Google Scholar 

  155. Saung WT, Narasimhan S, Lohoff FW. Lack of influence of DAT1 and DRD2 gene variants on antidepressant response in generalized anxiety disorder. Human Psychopharmacol. 2014;29(4):316–21.

    Article  CAS  Google Scholar 

  156. Serretti A, Zanardi R, Cusin C, Rossini D, Lilli R, Lorenzi C, et al. No association between dopamine D(2) and D(4) receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res. 2001;104(3):195–203.

    Article  CAS  PubMed  Google Scholar 

  157. Kirchheiner J, Nickchen K, Sasse J, Bauer M, Roots I, Brockmoller J. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J. 2007;7(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  158. Wang Y, Liu X, Yu Y, Han Y, Wei J, Collier D, et al. The role of single nucleotide polymorphism of D2 dopamine receptor gene on major depressive disorder and response to antidepressant treatment. Psychiatry Res. 2012;200(2–3):1047–50.

    Article  CAS  PubMed  Google Scholar 

  159. Calati R, Crisafulli C, Balestri M, Serretti A, Spina E, Calabro M, et al. Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients. Progr Neuro-psychopharmacol Biol Psychiatry. 2013;1(44):271–8.

    Article  CAS  Google Scholar 

  160. Powell TR, Schalkwyk LC, Heffernan AL, Breen G, Lawrence T, Price T, et al. Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified as putative transcriptomic biomarkers for escitalopram response. Eur Neuropsychopharmacol. 2013;23(9):1105–14.

    Article  CAS  PubMed  Google Scholar 

  161. Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P, et al. The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry. 2010;67(6):543–9.

    Article  CAS  PubMed  Google Scholar 

  162. Wu GS, Luo HR, Dong C, Mastronardi C, Licinio J, Wong ML. Sequence polymorphisms of MC1R gene and their association with depression and antidepressant response. Psychiatr Genet. 2011;21(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  163. Wong ML, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13(8):800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pae CU, Mandelli L, Serretti A, Patkar AA, Kim JJ, Lee CU, et al. Heat-shock protein-70 genes and response to antidepressants in major depression. Progr Neuro-psychopharmacol Biol Psychiatry. 2007;31(5):1006–11.

    Article  CAS  Google Scholar 

  165. Binder EB, Owens MJ, Liu W, Deveau TC, Rush AJ, Trivedi MH, et al. Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Arch Gen Psychiatry. 2010;67(4):369–79.

    Article  CAS  PubMed  Google Scholar 

  166. Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R, et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry. 2004;9(12):1075–82.

    Article  CAS  PubMed  Google Scholar 

  167. Chang HS, Won E, Lee HY, Ham BJ, Lee MS. Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants. Behav Brain Res. 2015;1(292):116–24.

    Article  CAS  Google Scholar 

  168. Kloiber S, Ripke S, Kohli MA, Reppermund S, Salyakina D, Uher R, et al. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels. Eur Neuropsychopharmacol. 2013;23(7):653–62.

    Article  CAS  PubMed  Google Scholar 

  169. Pae CU, Serretti A, Mandelli L, De Ronchi D, Patkar AA, Jun TY, et al. Dysbindin associated with selective serotonin reuptake inhibitor antidepressant efficacy. Pharmacogenet Genom. 2007;17(1):69–75.

    Article  CAS  Google Scholar 

  170. Domschke K, Hohoff C, Mortensen LS, Roehrs T, Deckert J, Arolt V, et al. Monoamine oxidase A variant influences antidepressant treatment response in female patients with major depression. Progr Neuro-psychopharmacol Biol Psychiatry. 2008;32(1):224–8.

    Article  CAS  Google Scholar 

  171. Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A. Pharmacogenetics of antidepressant response. J Psychiatry Neurosci JPN. 2011;36(2):87–113.

    Article  PubMed  Google Scholar 

  172. Schosser A, Serretti A, Souery D, Mendlewicz J, Zohar J, Montgomery S, et al. European Group for the Study of Resistant Depression (GSRD)—where have we gone so far: review of clinical and genetic findings. Eur Neuropsychopharmacol. 2012;22(7):453–68.

    Article  CAS  PubMed  Google Scholar 

  173. Perroud N. Suicidal ideation during antidepressant treatment: do genetic predictors exist? CNS Drugs. 2011;25(6):459–71.

    Article  CAS  PubMed  Google Scholar 

  174. Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genom. 2007;17(2):93–101.

    CAS  Google Scholar 

  175. Hodgson K, Tansey K, Dernovsek MZ, Hauser J, Henigsberg N, Maier W, et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J Psychopharmacol. 2014;28(2):133–41.

    Article  PubMed  CAS  Google Scholar 

  176. Suzuki Y, Sugai T, Fukui N, Watanabe J, Ono S, Inoue Y, et al. CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics. J Psychopharmacol. 2011;25(7):908–14.

    Article  CAS  PubMed  Google Scholar 

  177. Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H. Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit. 2006;28(1):102–5.

    Article  CAS  PubMed  Google Scholar 

  178. Probst-Schendzielorz K, Viviani R, Stingl JC. Effect of cytochrome P450 polymorphism on the action and metabolism of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol. 2015;11(8):1219–32.

    Article  CAS  PubMed  Google Scholar 

  179. Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry. 2013;25(5):509–33.

    Article  PubMed  Google Scholar 

  180. Muller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry. 2013;25(5):554–71.

    Article  PubMed  Google Scholar 

  181. Ji Y, Schaid DJ, Desta Z, Kubo M, Batzler AJ, Snyder K, et al. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations. Br J Clin Pharmacol. 2014;78(2):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol. 2000;20(2):246–51.

    Article  CAS  PubMed  Google Scholar 

  183. Bijl MJ, Visser LE, Hofman A, Vulto AG, van Gelder T, Stricker BH, et al. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol. 2008;65(4):558–64.

    Article  CAS  PubMed  Google Scholar 

  184. Brandl EJ, Tiwari AK, Zhou X, Deluce J, Kennedy JL, Muller DJ, et al. Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder. Pharmacogenomics J. 2014;14(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  185. Mrazek DA, Biernacka JM, O’Kane DJ, Black JL, Cunningham JM, Drews MS, et al. CYP2C19 variation and citalopram response. Pharmacogenet Genom. 2011;21(1):1–9.

    Article  CAS  Google Scholar 

  186. Tsai MH, Lin KM, Hsiao MC, Shen WW, Lu ML, Tang HS, et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics. 2010;11(4):537–46.

    Article  CAS  PubMed  Google Scholar 

  187. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther. 2004;75(5):386–93.

    Article  CAS  PubMed  Google Scholar 

  188. Kawanishi C, Lundgren S, Agren H, Bertilsson L. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol. 2004;59(11):803–7.

    Article  CAS  PubMed  Google Scholar 

  189. Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI, et al. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry. 2010;71(11):1482–7.

    Article  CAS  PubMed  Google Scholar 

  190. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PloS One. 2008;3(4):e1872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Serretti A, Calati R, Massat I, Linotte S, Kasper S, Lecrubier Y, et al. Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol. 2009;24(5):250–6.

    Article  PubMed  Google Scholar 

  192. Zhang X, Yu T, Li X, Li X, Huang X, Li X, et al. Neither cytochrome P450 family genes nor neuroendocrine factors could independently predict the SSRIs treatment in the Chinese Han population. Pharmacopsychiatry. 2014;47(2):60–6.

    Article  CAS  PubMed  Google Scholar 

  193. Haber A, Rideg O, Osvath P, Fekete S, Szucs F, Fittler A, et al. Patients with difficult-to-treat depression do not exhibit an increased frequency of CYP2D6 allele duplication. Pharmacopsychiatry. 2013;46(4):156–60.

    Article  CAS  PubMed  Google Scholar 

  194. Shams ME, Arneth B, Hiemke C, Dragicevic A, Muller MJ, Kaiser R, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther. 2006;31(5):493–502.

    Article  CAS  PubMed  Google Scholar 

  195. Zourkova A, Ceskova E, Hadasova E, Ravcukova B. Links among paroxetine-induced sexual dysfunctions, gender, and CYP2D6 activity. J Sex Marital Ther. 2007;33(4):343–55.

    Article  PubMed  Google Scholar 

  196. Kwadijk-de Gijsel S, Bijl MJ, Visser LE, van Schaik RH, Hofman A, Vulto AG, et al. Variation in the CYP2D6 gene is associated with a lower serum sodium concentration in patients on antidepressants. Br J Clin Pharmacol. 2009;68(2):221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Parker G, Rowe M, Mehta F, Kumar S. Will a new genotyping test help the clinician predict response to antidepressant drugs? Australas Psychiatry. 2010;18(5):413–6.

    Article  PubMed  Google Scholar 

  198. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry. 2011;44(6):195–235.

    Article  Google Scholar 

  199. Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93(5):402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9(5):442–73.

    Article  CAS  PubMed  Google Scholar 

  202. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genom. 2011;21(3):152–61.

    Article  CAS  Google Scholar 

  203. Ray A, Tennakoon L, Keller J, Sarginson JE, Ryan HS, Murphy GM, et al. ABCB1 (MDR1) predicts remission on P-gp substrates in chronic depression. Pharmacogenomics J. 2015;15(4):332–9.

    Article  CAS  PubMed  Google Scholar 

  204. Schatzberg AF, DeBattista C, Lazzeroni LC, Etkin A, Murphy GM Jr, Williams LM. ABCB1 genetic effects on antidepressant outcomes: a report from the iSPOT-D trial. Am J Psychiatry. 2015;172(8):751–9.

    Article  PubMed  Google Scholar 

  205. Chang HH, Chou CH, Yang YK, Lee IH, Chen PS. Association between ABCB1 polymorphisms and antidepressant treatment response in Taiwanese major depressive patients. Clin Psychopharmacol Neurosci. 2015;13(3):250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Jelen AM, Salagacka A, Zebrowska MK, Mirowski M, Talarowska M, Galecki P, et al. The influence of C3435T polymorphism of the ABCB1 gene on genetic susceptibility to depression and treatment response in Polish population—preliminary report. Int J Med Sci. 2015;12(12):974–9.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Noordam R, Aarts N, Hofman A, van Schaik RH, Stricker BH, Visser LE. Association between genetic variation in the ABCB1 gene and switching, discontinuation, and dosage of antidepressant therapy: results from the Rotterdam Study. J Clin Psychopharmacol. 2013;33(4):546–50.

    Article  CAS  PubMed  Google Scholar 

  208. Breitenstein B, Scheuer S, Bruckl TM, Meyer J, Ising M, Uhr M, et al. Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: results from a randomized clinical study. J Psychiatr Res. 2016;73:86–95.

    Article  PubMed  Google Scholar 

  209. Lin KM, Chiu YF, Tsai IJ, Chen CH, Shen WW, Liu SC, et al. ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenet Genom. 2011;21(4):163–70.

    CAS  Google Scholar 

  210. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G, et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit. 2008;30(4):474–82.

    CAS  PubMed  Google Scholar 

  211. Nikisch G, Eap CB, Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res. 2008;58(5–6):344–7.

    Article  CAS  PubMed  Google Scholar 

  212. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008;57(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  213. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Progr Neuro-psychopharmacol Biol Psychiatry. 2008;32(2):398–404.

    Article  CAS  Google Scholar 

  214. Singh AB, Bousman CA, Ng CH, Byron K, Berk M. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression. Transl Psychiatry. 2012;2:e198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Roberts RL, Joyce PR, Mulder RT, Begg EJ, Kennedy MA. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  216. Zourkova A, Slanar O, Jarkovsky J, Palcikova I, Pindurova E, Cvanova M. MDR1 in paroxetine-induced sexual dysfunction. J Sex Marital Ther. 2013;39(1):71–8.

    Article  PubMed  Google Scholar 

  217. de Klerk OL, Nolte IM, Bet PM, Bosker FJ, Snieder H, den Boer JA, et al. ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder. Pharmacogenomics J. 2013;13(4):349–53.

    Article  PubMed  CAS  Google Scholar 

  218. Ozbey G, Yucel B, Taycan SE, Kan D, Bodur NE, Arslan T, et al. ABCB1 C3435T polymorphism is associated with susceptibility to major depression, but not with a clinical response to citalopram in a Turkish population. Pharmacol Rep. 2014;66(2):235–8.

    Article  CAS  PubMed  Google Scholar 

  219. Huang X, Yu T, Li X, Cao Y, Li X, Liu B, et al. ABCB6, ABCB1 and ABCG1 genetic polymorphisms and antidepressant response of SSRIs in Chinese depressive patients. Pharmacogenomics. 2013;14(14):1723–30.

    Article  CAS  PubMed  Google Scholar 

  220. Menu P, Gressier F, Verstuyft C, Hardy P, Becquemont L, Corruble E. Antidepressants and ABCB1 gene C3435T functional polymorphism: a naturalistic study. Neuropsychobiology. 2010;62(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  221. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy GM Jr. ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genom. 2010;20(8):467–75.

    Article  CAS  Google Scholar 

  222. Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry. 2009;14(12):1105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Laika B, Leucht S, Steimer W. ABCB1 (P-glycoprotein/MDR1) gene G2677T/a sequence variation (polymorphism): lack of association with side effects and therapeutic response in depressed inpatients treated with amitriptyline. Clin Chem. 2006;52(5):893–5.

    Article  CAS  PubMed  Google Scholar 

  224. De Luca V, Mundo E, Trakalo J, Wong GW, Kennedy JL. Investigation of polymorphism in the MDR1 gene and antidepressant-induced mania. Pharmacogenomics J. 2003;3(5):297–9.

    Article  PubMed  CAS  Google Scholar 

  225. Breitenstein B, Bruckl TM, Ising M, Muller-Myhsok B, Holsboer F, Czamara D. ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet. 2015;168B(4):274–83.

    Article  CAS  Google Scholar 

  226. Breitenstein B, Scheuer S, Pfister H, Uhr M, Lucae S, Holsboer F, et al. The clinical application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Spectr. 2014;19(2):165–75.

    Article  PubMed  Google Scholar 

  227. Laje G, McMahon FJ. Genome-wide association studies of antidepressant outcome: a brief review. Progr Neuro-psychopharmacol Biol Psychiatry. 2011;35(7):1553–7.

    Article  CAS  Google Scholar 

  228. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry. 2010;67(2):133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S, et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry. 2009;66(9):966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hunter AM, Leuchter AF, Power RA, Muthen B, McGrath PJ, Lewis CM, et al. A genome-wide association study of a sustained pattern of antidepressant response. J Psychiatr Res. 2013;47(9):1157–65.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Investigators G, Investigators M, Investigators SD. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry. 2013;170(2):207–17.

    Article  Google Scholar 

  232. Tansey KE, Guipponi M, Perroud N, Bondolfi G, Domenici E, Evans D, et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med. 2012;9(10):e1001326.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Biernacka JM, Sangkuhl K, Jenkins G, Whaley RM, Barman P, Batzler A, et al. The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response. Transl Psychiatry. 2015;5:e553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Cocchi E, Fabbri C, Han C, Lee SJ, Patkar AA, Masand PS, et al. Genome-wide association study of antidepressant response: involvement of the inorganic cation transmembrane transporter activity pathway. BMC Psychiatry. 2016;16(1):106.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Myung W, Kim J, Lim SW, Shim S, Won HH, Kim S, et al. A genome-wide association study of antidepressant response in Koreans. Transl Psychiatry. 2015;5:e633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Adkins DE, Clark SL, Aberg K, Hettema JM, Bukszar J, McClay JL, et al. Genome-wide pharmacogenomic study of citalopram-induced side effects in STAR*D. Transl Psychiatry. 2012;2:e129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Clark SL, Adkins DE, Aberg K, Hettema JM, McClay JL, Souza RP, et al. Pharmacogenomic study of side-effects for antidepressant treatment options in STAR*D. Psychol Med. 2012;42(6):1151–62.

    Article  CAS  PubMed  Google Scholar 

  238. Laje G, Allen AS, Akula N, Manji H, John Rush A, McMahon FJ. Genome-wide association study of suicidal ideation emerging during citalopram treatment of depressed outpatients. Pharmacogenet Genom. 2009;19(9):666–74.

    Article  CAS  Google Scholar 

  239. Perroud N, Uher R, Ng MY, Guipponi M, Hauser J, Henigsberg N, et al. Genome-wide association study of increasing suicidal ideation during antidepressant treatment in the GENDEP project. Pharmacogenomics J. 2012;12(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  240. Menke A, Domschke K, Czamara D, Klengel T, Hennings J, Lucae S, et al. Genome-wide association study of antidepressant treatment-emergent suicidal ideation. Neuropsychopharmacology. 2012;37(3):797–807.

    Article  CAS  PubMed  Google Scholar 

  241. Kurose K, Hiratsuka K, Ishiwata K, Nishikawa J, Nonen S, Azuma J, et al. Genome-wide association study of SSRI/SNRI-induced sexual dysfunction in a Japanese cohort with major depression. Psychiatry Res. 2012;198(3):424–9.

    Article  CAS  PubMed  Google Scholar 

  242. Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage. 2002;16(2):331–48.

    Article  PubMed  Google Scholar 

  243. Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2013;37(2):152–63.

    Article  PubMed  Google Scholar 

  244. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry. 2012;169(7):693–703.

    Article  PubMed  Google Scholar 

  245. Bora E, Fornito A, Pantelis C, Yucel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012;138(1–2):9–18.

    Article  PubMed  Google Scholar 

  246. Posner J, Hellerstein DJ, Gat I, Mechling A, Klahr K, Wang Z, et al. Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry. 2013;70(4):373–82.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Andreescu C, Tudorascu DL, Butters MA, Tamburo E, Patel M, Price J, et al. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res. 2013;214(3):313–21.

    Article  PubMed  Google Scholar 

  248. Yamamura T, Okamoto Y, Okada G, Takaishi Y, Takamura M, Mantani A, et al. Association of thalamic hyperactivity with treatment-resistant depression and poor response in early treatment for major depression: a resting-state fMRI study using fractional amplitude of low-frequency fluctuations. Transl Psychiatry. 2016;6:e754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Munafo MR, Brown SM, Hariri AR. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry. 2008;63(9):852–7.

    Article  CAS  PubMed  Google Scholar 

  250. Murphy SE, Norbury R, Godlewska BR, Cowen PJ, Mannie ZM, Harmer CJ, et al. The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry. 2013;18(4):512–20.

    Article  CAS  PubMed  Google Scholar 

  251. Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry. 2011;68(5):444–54.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. Jama. 2009;301(23):2462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ramasubbu R, Burgess A, Gaxiola-Valdez I, Cortese F, Clark D, Kemp A, et al. Amygdala responses to quetiapine XR and citalopram treatment in major depression: the role of 5-HTTLPR-S/Lg polymorphisms. Human Psychopharmacol. 2016;31(2):144–55.

    Article  CAS  Google Scholar 

  254. Ruhe HG, Ooteman W, Booij J, Michel MC, Moeton M, Baas F, et al. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder. Pharmacogenet Genom. 2009;19(1):67–76.

    Article  CAS  Google Scholar 

  255. Outhred T, Das P, Dobson-Stone C, Felmingham KL, Bryant RA, Nathan PJ, et al. The impact of 5-HTTLPR on acute serotonin transporter blockade by escitalopram on emotion processing: preliminary findings from a randomised, crossover fMRI study. Aust N Z J Psychiatry. 2014;48(12):1115–25.

    Article  PubMed  Google Scholar 

  256. Outhred T, Das P, Dobson-Stone C, Felmingham KL, Bryant RA, Nathan PJ, et al. Impact of 5-HTTLPR on SSRI serotonin transporter blockade during emotion regulation: a preliminary fMRI study. J Affect Disord. 2016;15(196):11–9.

    Article  CAS  Google Scholar 

  257. Ma Y, Li B, Wang C, Zhang W, Rao Y, Han S. Allelic variation in 5-HTTLPR and the effects of citalopram on the emotional neural network. Br J Psychiatry. 2015;206(5):385–92.

    Article  PubMed  Google Scholar 

  258. Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med. 2008;14(9):923–30.

    Article  CAS  PubMed  Google Scholar 

  259. Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol. 2000;361(1):19–24.

    Article  CAS  Google Scholar 

  260. Ferre S, Quiroz C, Woods AS, Cunha R, Popoli P, Ciruela F, et al. An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharmaceut Des. 2008;14(15):1468–74.

    Article  CAS  Google Scholar 

  261. Hudson BD, Hebert TE, Kelly ME. Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol. 2010;77(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  262. Hill MN, Ho WS, Sinopoli KJ, Viau V, Hillard CJ, Gorzalka BB. Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology. 2006;31(12):2591–9.

    Article  CAS  PubMed  Google Scholar 

  263. Bambico FR, Gobbi G. The cannabinoid CB1 receptor and the endocannabinoid anandamide: possible antidepressant targets. Expert Opin Ther Targets. 2008;12(11):1347–66.

    Article  CAS  PubMed  Google Scholar 

  264. Domschke K, Dannlowski U, Ohrmann P, Lawford B, Bauer J, Kugel H, et al. Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol. 2008;18(10):751–9.

    Article  CAS  PubMed  Google Scholar 

  265. Eaton K, Sallee FR, Sah R. Relevance of neuropeptide Y (NPY) in psychiatry. Curr Topics Med Chem. 2007;7(17):1645–59.

    Article  CAS  Google Scholar 

  266. Domschke K, Dannlowski U, Hohoff C, Ohrmann P, Bauer J, Kugel H, et al. Neuropeptide Y (NPY) gene: impact on emotional processing and treatment response in anxious depression. Eur Neuropsychopharmacol. 2010;20(5):301–9.

    Article  CAS  PubMed  Google Scholar 

  267. O’Brien SM, Scott LV, Dinan TG. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Human Psychopharmacol. 2004;19(6):397–403.

    Article  CAS  Google Scholar 

  268. Cardoner N, Soria V, Gratacos M, Hernandez-Ribas R, Pujol J, Lopez-Sola M, et al. Val66Met BDNF genotypes in melancholic depression: effects on brain structure and treatment outcome. Depression Anxiety. 2013;30(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  269. Alexopoulos GS, Glatt CE, Hoptman MJ, Kanellopoulos D, Murphy CF, Kelly RE Jr, et al. BDNF val66met polymorphism, white matter abnormalities and remission of geriatric depression. J Affect Disord. 2010;125(1–3):262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Weinberger DR, Radulescu E. Finding the elusive psychiatric “Lesion” with 21st-century neuroanatomy: a note of caution. Am J Psychiatry. 2016;173(1):27–33.

    Article  PubMed  Google Scholar 

  271. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006;7(10):818–27.

    Article  CAS  PubMed  Google Scholar 

  272. Flint J, Munafo MR. The endophenotype concept in psychiatric genetics. Psychol Med. 2007;37(2):163–80.

    Article  PubMed  Google Scholar 

  273. Wiles N, Thomas L, Abel A, Ridgway N, Turner N, Campbell J, et al. Cognitive behavioural therapy as an adjunct to pharmacotherapy for primary care based patients with treatment resistant depression: results of the CoBalT randomised controlled trial. Lancet. 2013;381(9864):375–84.

    Article  PubMed  Google Scholar 

  274. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  275. Fitzgerald PB, Hoy K, McQueen S, Maller JJ, Herring S, Segrave R, et al. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology. 2009;34(5):1255–62.

    Article  PubMed  Google Scholar 

  276. Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry. 2016;208(6):522–31.

    Article  PubMed  Google Scholar 

  277. Bauer M, Dopfmer S. Lithium augmentation in treatment-resistant depression: meta-analysis of placebo-controlled studies. J Clin Psychopharmacol. 1999;19(5):427–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva J. Brandl.

Ethics declarations

Funding

TAL is supported by a Canadian Institute of Health Research (CIHR) Fellowship.

Conflict of interest

HW has received speaker fees from Servier. TAL and EJB have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lett, T.A., Walter, H. & Brandl, E.J. Pharmacogenetics and Imaging–Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs 30, 1169–1189 (2016). https://doi.org/10.1007/s40263-016-0385-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0385-9

Keywords

Navigation