Skip to main content

Advertisement

Log in

Pharmacogenetics of Major Depressive Disorder: Top Genes and Pathways Toward Clinical Applications

  • Genetic Disorders (W Berrettini, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Whiteford HA, Degenhardt L, Rehm J, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86.

    PubMed  Google Scholar 

  2. U.S. Burden of Disease Collaborators. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310:591–608.

    Google Scholar 

  3. Olfson M, Marcus SC. National patterns in antidepressant medication treatment. Arch Gen Psychiatry. 2009;66:848–56.

    PubMed  Google Scholar 

  4. Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    PubMed  Google Scholar 

  5. O’Reilly RL, Bogue L, Singh SM. Pharmacogenetic response to antidepressants in a multicase family with affective disorder. Biol Psychiatry. 1994;36:467–71.

    PubMed  Google Scholar 

  6. Pare CM, Rees L, Sainsbury MJ. Differentiation of two genetically specific types of depression by the response to anti-depressants. Lancet. 1962;2:1340–3.

    CAS  PubMed  Google Scholar 

  7. Franchini L, Serretti A, Gasperini M, Smeraldi E. Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res. 1998;32:255–9.

    CAS  PubMed  Google Scholar 

  8. Tansey KE, Guipponi M, Hu X, et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry. 2013;73:679–82.

    CAS  PubMed  Google Scholar 

  9. Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:487–520. A recent and comprehensive review of antidepressant pharmacogenetics.

    PubMed  Google Scholar 

  10. Garriock HA, Kraft JB, Shyn SI, et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry. 2010;67:133–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ising M, Lucae S, Binder EB, et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry. 2009;66:966–75.

    CAS  PubMed  Google Scholar 

  12. Uher R, Perroud N, Ng MY, et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry. 2010;167:555–64.

    PubMed  Google Scholar 

  13. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012;22:239–58.

    CAS  PubMed  Google Scholar 

  14. Gudayol-Ferre E, Herrera-Guzman I, Camarena B, et al. Prediction of remission of depression with clinical variables, neuropsychological performance, and serotonergic/dopaminergic gene polymorphisms. Hum Psychopharmacol. 2012;27:577–86.

    CAS  PubMed  Google Scholar 

  15. Bousman CA, Sarris J, Won ES, et al. Escitalopram efficacy in depression: a cross-ethnicity examination of the serotonin transporter promoter polymorphism. J Clin Psychopharmacol. 2014;34:645–8.

    CAS  PubMed  Google Scholar 

  16. Staeker J, Leucht S, Laika B, Steimer W. Polymorphisms in serotonergic pathways influence the outcome of antidepressant therapy in psychiatric inpatients. Genet Test Mol Biomark. 2014;18:20–31.

    CAS  Google Scholar 

  17. Fabbri C, Marsano A, Albani D, et al. PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor signaling pathway. Pharmacogenomics J. 2014;14:463–72. Pharmacogenetic study across different samples that used pathway analysis to identify the molecular mechanisms behind the association of a gene with antidepressant response.

    CAS  PubMed  Google Scholar 

  18. Noordam R, Direk N, Sitlani CM, et al. Identifying genetic loci associated with antidepressant drug response with drug-gene interaction models in a population-based study. J Psychiatr Res. 2015.

  19. Niitsu T, Fabbri C, Bentini F, Serretti A. Pharmacogenetics in major depression: a comprehensive meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:183–94. The most recent meta-analysis that investigated all the top candidate genes outlined by antidepressant pharmacogenetic studies.

    CAS  PubMed  Google Scholar 

  20. Tiwari AK, Zai CC, Sajeev G, Arenovich T, Muller DJ, Kennedy JL. Analysis of 34 candidate genes in bupropion and placebo remission. Int J Neuropsychopharmacol. 2013;16:771–81.

    CAS  PubMed  Google Scholar 

  21. Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet. 2003;123B:19–22.

    PubMed  Google Scholar 

  22. Yoshida K, Higuchi H, Kamata M, et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol. 2007;21:650–6.

    CAS  PubMed  Google Scholar 

  23. Zou YF, Wang Y, Liu P, et al. Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum Psychopharmacol. 2010;25:145–52.

    CAS  PubMed  Google Scholar 

  24. Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 2006;1118:176–82.

    CAS  PubMed  Google Scholar 

  25. Alexopoulos GS, Glatt CE, Hoptman MJ, et al. BDNF Val66met polymorphism, white matter abnormalities and remission of geriatric depression. J Affect Disord. 2010.

  26. Taylor WD, McQuoid DR, Ashley-Koch A, et al. BDNF Val66Met genotype and 6-month remission rates in late-life depression. Pharmacogenomics J. 2010.

  27. Kocabas NA, Antonijevic I, Faghel C, et al. Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder. Int Clin Psychopharmacol. 2011;26:1–10.

    PubMed  Google Scholar 

  28. El-Hage W, Vourc’h P, Gaillard P, et al. The BDNF Val(66)Met polymorphism is associated with escitalopram response in depressed patients. Psychopharmacology (Berl). 2015;232:575–81.

    CAS  Google Scholar 

  29. Zill P, Baghai TC, Zwanzger P, et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport. 2000;11:1893–7.

    CAS  PubMed  Google Scholar 

  30. Serretti A, Lorenzi C, Cusin C, et al. SSRIs antidepressant activity is influenced by Gbeta3 variants. Eur Neuropsychopharmacol. 2003;13:117–22.

    CAS  PubMed  Google Scholar 

  31. Lee HJ, Cha JH, Ham BJ, et al. Association between a G-protein beta3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J. 2004;4:29–33.

    CAS  PubMed  Google Scholar 

  32. Keers R, Bonvicini C, Scassellati C, et al. Variation in GNB3 predicts response and adverse reactions to antidepressants. J Psychopharmacol. 2010.

  33. Hu Q, Zhang SY, Liu F, et al. Influence of GNB3 C825T polymorphism on the efficacy of antidepressants in the treatment of major depressive disorder: a meta-analysis. J Affect Disord. 2014;172C:103–9.

    PubMed  Google Scholar 

  34. Lekman M, Laje G, Charney D, et al. The FKBP5-gene in depression and treatment response—an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 2008;63:1103–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36:1319–25.

    CAS  PubMed  Google Scholar 

  36. Kirchheiner J, Lorch R, Lebedeva E, et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics. 2008;9:841–6.

    CAS  PubMed  Google Scholar 

  37. Ellsworth KA, Moon I, Eckloff BW, et al. FKBP5 genetic variation: association with selective serotonin reuptake inhibitor treatment outcomes in major depressive disorder. Pharmacogenet Genomics. 2013;23:156–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zou YF, Wang F, Feng XL, et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci Lett. 2010;484:56–61.

    CAS  PubMed  Google Scholar 

  39. Kato M, Fukuda T, Serretti A, et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:398–404.

    CAS  PubMed  Google Scholar 

  40. Nikisch G, Eap CB, Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res. 2008;58:344–7.

    CAS  PubMed  Google Scholar 

  41. Uhr M, Tontsch A, Namendorf C, et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008;57:203–9.

    CAS  PubMed  Google Scholar 

  42. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy Jr GM. ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genomics. 2010;20:467–75.

    CAS  PubMed  Google Scholar 

  43. Peters EJ, Slager SL, Kraft JB, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One. 2008;3, e1872.

    PubMed Central  PubMed  Google Scholar 

  44. Tsai MH, Lin KM, Hsiao MC, et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics. 2010;11:537–46.

    CAS  PubMed  Google Scholar 

  45. Kawanishi C, Lundgren S, Agren H, Bertilsson L. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol. 2004;59:803–7.

    CAS  PubMed  Google Scholar 

  46. Rau T, Wohlleben G, Wuttke H, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants—a pilot study. Clin Pharmacol Ther. 2004;75:386–93.

    CAS  PubMed  Google Scholar 

  47. Zackrisson AL, Lindblom B, Ahlner J. High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther. 2010;88:354–9.

    CAS  PubMed  Google Scholar 

  48. Muller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry. 2013;25:554–71.

    PubMed  Google Scholar 

  49. Yin OQ, Wing YK, Cheung Y, et al. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol. 2006;26:367–72.

    CAS  PubMed  Google Scholar 

  50. Mrazek DA, Biernacka JM, O’Kane DJ, et al. CYP2C19 variation and citalopram response. Pharmacogenet Genomics. 2011;21:1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Nutt D, Demyttenaere K, Janka Z, et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol. 2007;21:461–71.

    CAS  PubMed  Google Scholar 

  52. Lam RW, Kennedy SH, Grigoriadis S, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) clinical guidelines for the management of major depressive disorder in adults. III. Pharmacotherapy. J Affect Disord. 2009;117 Suppl 1:S26–43.

    PubMed  Google Scholar 

  53. Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin trasporter gene expression. J Neurochem. 1996;66:2621–4.

    CAS  PubMed  Google Scholar 

  54. Serretti A, Calati R, Mandelli L, De Ronchi D. Serotonin transporter gene variants and behavior: a comprehensive review. Curr Drug Targets. 2006;7:1659–69.

    CAS  PubMed  Google Scholar 

  55. McMahon FJ, Buervenich S, Charney D, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet. 2006;78:804–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Peters EJ, Slager SL, Jenkins GD, et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genomics. 2009;19:1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Uher R, Huezo-Diaz P, Perroud N, et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 2009;9:225–33.

    CAS  PubMed  Google Scholar 

  58. Kishi T, Yoshimura R, Kitajima T, et al. HTR2A is associated with SSRI response in major depressive disorder in a Japanese cohort. Neuromol Med. 2009.

  59. Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol Psychiatry. 2009;65:785–91.

    CAS  PubMed  Google Scholar 

  60. Horstmann S, Lucae S, Menke A, et al. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology. 2010;35:727–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lucae S, Ising M, Horstmann S, et al. HTR2A gene variation is involved in antidepressant treatment response. Eur Neuropsychopharmacol. 2010;20:65–8.

    CAS  PubMed  Google Scholar 

  62. Illi A, Setala-Soikkeli E, Viikki M, et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport. 2009;20:1125–8.

    CAS  PubMed  Google Scholar 

  63. Stein DJ, Daniels WM, Savitz J, Harvey BH. Brain-derived neurotrophic factor: the neurotrophin hypothesis of psychopathology. CNS Spectr. 2008;13:945–9.

    PubMed  Google Scholar 

  64. Cattaneo A, Gennarelli M, Uher R, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38:377–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Bath KG, Jing DQ, Dincheva I, et al. BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology. 2012;37:1297–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.

    CAS  PubMed  Google Scholar 

  67. Govindarajan A, Rao BS, Nair D, et al. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc Natl Acad Sci U S A. 2006;103:13208–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Petryshen TL, Sabeti PC, Aldinger KA, et al. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry. 2010;15:810–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ruiz-Velasco V, Ikeda SR. A splice variant of the G protein beta 3-subunit implicated in disease states does not modulate ion channels. Physiol Genomics. 2003;13:85–95.

    CAS  PubMed  Google Scholar 

  70. Klenke S, Kussmann M, Siffert W. The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression. Pharmacogenet Genomics. 2011;21:594–606.

    CAS  PubMed  Google Scholar 

  71. Hong CJ, Chen TJ, Yu YW, Tsai SJ. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J. 2006;6:27–33.

    CAS  PubMed  Google Scholar 

  72. Kato M, Wakeno M, Okugawa G, et al. Antidepressant response and intolerance to SSRI is not influenced by G-protein beta3 subunit gene C825T polymorphism in Japanese major depressive patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1041–4.

    CAS  PubMed  Google Scholar 

  73. Kang RH, Hahn SW, Choi MJ, Lee MS. Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression. Neuropsychobiology. 2007;56:1–5.

    CAS  PubMed  Google Scholar 

  74. Pei H, Li L, Fridley BL, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16:259–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Beaulieu JM, Gainetdinov RR, Caron MG. Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol. 2009;49:327–47.

    CAS  PubMed  Google Scholar 

  76. Dwivedi Y, Rizavi HS, Zhang H, Roberts RC, Conley RR, Pandey GN. Modulation in activation and expression of phosphatase and tensin homolog on chromosome ten, Akt1, and 3-phosphoinositide-dependent kinase 1: further evidence demonstrating altered phosphoinositide 3-kinase signaling in postmortem brain of suicide subjects. Biol Psychiatry. 2010;67:1017–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35:47–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology. 2000;141:4107–13.

    CAS  PubMed  Google Scholar 

  79. Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009;34 Suppl 1:S186–95.

    CAS  PubMed  Google Scholar 

  80. Vermeer H, Hendriks-Stegeman BI, van der Burg B, van Buul-Offers SC, Jansen M. Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J Clin Endocrinol Metab. 2003;88:277–84.

    CAS  PubMed  Google Scholar 

  81. Guidotti G, Calabrese F, Anacker C, Racagni G, Pariante CM, Riva MA. Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacology. 2013;38:616–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord. 2007;104:83–90.

    CAS  PubMed  Google Scholar 

  83. Sarginson JE, Lazzeroni LC, Ryan HS, Schatzberg AF, Murphy Jr GM. FKBP5 polymorphisms and antidepressant response in geriatric depression. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:554–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Tsai SJ, Hong CJ, Chen TJ, Yu YW. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:1097–8.

    CAS  PubMed  Google Scholar 

  85. Zobel A, Schuhmacher A, Jessen F, et al. DNA sequence variants of the FKBP5 gene are associated with unipolar depression. Int J Neuropsychopharmacol. 2010;13:649–60.

    CAS  PubMed  Google Scholar 

  86. Eichelbaum M, Fromm MF, Schwab M. Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit. 2004;26:180–5.

    CAS  PubMed  Google Scholar 

  87. Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry. 2009;14:1105–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Huang X, Yu T, Li X, et al. ABCB6, ABCB1 and ABCG1 genetic polymorphisms and antidepressant response of SSRIs in Chinese depressive patients. Pharmacogenomics. 2013;14:1723–30.

    CAS  PubMed  Google Scholar 

  89. Gex-Fabry M, Eap CB, Oneda B, et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit. 2008;30:474–82.

    CAS  PubMed  Google Scholar 

  90. Mihaljevic Peles A, Bozina N, Sagud M, Rojnic Kuzman M, Lovric M. MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1439–44.

    CAS  PubMed  Google Scholar 

  91. Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry. 2010;67:1110–3.

    CAS  PubMed  Google Scholar 

  92. Laika B, Leucht S, Steimer W. ABCB1 (P-glycoprotein/MDR1) gene G2677T/a sequence variation (polymorphism): lack of association with side effects and therapeutic response in depressed inpatients treated with amitriptyline. Clin Chem. 2006;52:893–5.

    CAS  PubMed  Google Scholar 

  93. Porcelli S, Fabbri C, Spina E, Serretti A, De Ronchi D. Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Expert Opin Drug Metab Toxicol. 2011;7:1101–15.

    CAS  PubMed  Google Scholar 

  94. Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther. 2006;31:493–502.

    CAS  PubMed  Google Scholar 

  95. Nichols AI, Lobello K, Guico-Pabia CJ, Paul J, Preskorn SH. Venlafaxine metabolism as a marker of cytochrome P450 enzyme 2D6 metabolizer status. J Clin Psychopharmacol. 2009;29:383–6.

    CAS  PubMed  Google Scholar 

  96. van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit. 2005;27:478–83.

    PubMed  Google Scholar 

  97. Whyte EM, Romkes M, Mulsant BH, et al. CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry. 2006;21:542–9.

    PubMed  Google Scholar 

  98. Eap CB, Lessard E, Baumann P, et al. Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics. 2003;13:39–47.

    CAS  PubMed  Google Scholar 

  99. Fukuda T, Nishida Y, Zhou Q, Yamamoto I, Kondo S, Azuma J. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol. 2000;56:175–80.

    CAS  PubMed  Google Scholar 

  100. Fukuda T, Yamamoto I, Nishida Y, et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol. 1999;47:450–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteux G. Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit. 2003;25:738–42.

    CAS  PubMed  Google Scholar 

  102. LLerena A, Dorado P, Berecz R, Gonzalez AP, Penas LEM. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol. 2004;59:869–73.

    CAS  PubMed  Google Scholar 

  103. Eap CB, Bondolfi G, Zullino D, et al. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol. 2001;21:330–4.

    CAS  PubMed  Google Scholar 

  104. Scordo MG, Spina E, Dahl ML, Gatti G, Perucca E. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol. 2005;97:296–301.

    CAS  PubMed  Google Scholar 

  105. Sawamura K, Suzuki Y, Someya T. Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol. 2004;60:553–7.

    CAS  PubMed  Google Scholar 

  106. Ueda M, Hirokane G, Morita S, et al. The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:486–91.

    CAS  PubMed  Google Scholar 

  107. Dalen P, Dahl ML, Bernal Ruiz ML, Nordin J, Bertilsson L. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther. 1998;63:444–52.

    CAS  PubMed  Google Scholar 

  108. Kvist EE, Al-Shurbaji A, Dahl ML, Nordin C, Alvan G, Stahle L. Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet. 2001;40:869–77.

    CAS  PubMed  Google Scholar 

  109. Morita S, Shimoda K, Someya T, Yoshimura Y, Kamijima K, Kato N. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol. 2000;20:141–9.

    CAS  PubMed  Google Scholar 

  110. Lee SY, Sohn KM, Ryu JY, Yoon YR, Shin JG, Kim JW. Sequence-based CYP2D6 genotyping in the Korean population. Ther Drug Monit. 2006;28:382–7.

    CAS  PubMed  Google Scholar 

  111. Fudio S, Borobia AM, Pinana E, et al. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol. 2010;626:200–4.

    CAS  PubMed  Google Scholar 

  112. Yu BN, Chen GL, He N, et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos. 2003;31:1255–9.

    CAS  PubMed  Google Scholar 

  113. de Vos A, van der Weide J, Loovers HM. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J. 2011;11:359–67.

    PubMed  Google Scholar 

  114. Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H. Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit. 2006;28:102–5.

    CAS  PubMed  Google Scholar 

  115. Jin Y, Pollock BG, Frank E, et al. Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J Clin Pharmacol. 2010;50:62–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther. 2008;83:322–7.

    CAS  PubMed  Google Scholar 

  117. Hodgson K, Tansey K, Dernovsek MZ, et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J Psychopharmacol. 2014;28:133–41.

    PubMed  Google Scholar 

  118. Steimer W, Zopf K, von Amelunxen S, et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem. 2004;50:1623–33.

    CAS  PubMed  Google Scholar 

  119. Shimoda K, Someya T, Yokono A, et al. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol. 2002;22:371–8.

    CAS  PubMed  Google Scholar 

  120. Kirchheiner J, Brosen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand. 2001;104:173–92.

    CAS  PubMed  Google Scholar 

  121. Jin L, Zuo XY, Su WY, et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics. 2014;12:210–20.

    PubMed Central  PubMed  Google Scholar 

  122. Hunter AM, Leuchter AF, Power RA, et al. A genome-wide association study of a sustained pattern of antidepressant response. J Psychiatr Res. 2013;47:1157–65. A re-analyses of STAR*D data that included a genome-wide pathway analysis.

    PubMed Central  PubMed  Google Scholar 

  123. Fabbri C, Crisafulli C, Gurwitz D, et al. Neuronal cell adhesion genes and antidepressant response in three independent samples. Pharmacogenomics J. 2015 [Accepted for publication].

  124. Janssen DG, Caniato RN, Verster JC, Baune BT. A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol. 2010;25:201–15.

    CAS  PubMed  Google Scholar 

  125. Maes M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:664–75.

    CAS  PubMed  Google Scholar 

  126. Zhu H, Bogdanov MB, Boyle SH, et al. Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder—possible role for methoxyindole pathway. PLoS One. 2013;8, e68283.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Cutler JA, Rush AJ, McMahon FJ, Laje G. Common genetic variation in the indoleamine-2,3-dioxygenase genes and antidepressant treatment outcome in major depressive disorder. J Psychopharmacol. 2012;26:360–7.

    CAS  PubMed  Google Scholar 

  128. Scott GN, DuHadaway J, Pigott E, et al. The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity. J Immunol. 2009;182:7509–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Maes M, Stevens WJ, DeClerck LS, et al. A significantly increased number and percentage of B cells in depressed subjects: results of flow cytometric measurements. J Affect Disord. 1992;24:127–34.

    CAS  PubMed  Google Scholar 

  130. Hernandez ME, Martinez-Fong D, Perez-Tapia M, Estrada-Garcia I, Estrada-Parra S, Pavon L. Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur Neuropsychopharmacol. 2010;20:88–95.

    CAS  PubMed  Google Scholar 

  131. Edgar VA, Cremaschi GA, Sterin-Borda L, Genaro AM. Altered expression of autonomic neurotransmitter receptors and proliferative responses in lymphocytes from a chronic mild stress model of depression: effects of fluoxetine. Brain Behav Immun. 2002;16:333–50.

    CAS  PubMed  Google Scholar 

  132. Banasr M, Duman RS. Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets. 2007;6:311–20.

    CAS  PubMed  Google Scholar 

  133. Duman RS. Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci. 2009;11:239–55.

    PubMed Central  PubMed  Google Scholar 

  134. Ganea K, Menke A, Schmidt MV, et al. Convergent animal and human evidence suggests the activin/inhibin pathway to be involved in antidepressant response. Transl Psychiatry. 2012;2, e177.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Murphy Jr GM, Sarginson JE, Ryan HS, O’Hara R, Schatzberg AF, Lazzeroni LC. BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genomics. 2013;23:301–13.

    CAS  PubMed  Google Scholar 

  136. Hussaini SM, Choi CI, Cho CH, Kim HJ, Jun H, Jang MH. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci Biobehav Rev. 2014;47:369–83.

    CAS  PubMed  Google Scholar 

  137. Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Verhaagen J, Oestreicher AB, Grillo M, Khew-Goodall YS, Gispen WH, Margolis FL. Neuroplasticity in the olfactory system: differential effects of central and peripheral lesions of the primary olfactory pathway on the expression of B-50/GAP43 and the olfactory marker protein. J Neurosci Res. 1990;26:31–44.

    CAS  PubMed  Google Scholar 

  139. Duric V, Banasr M, Stockmeier CA, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Morris RG. Long-term potentiation and memory. Philos Trans R Soc Lond B Biol Sci. 2003;358:643–7.

    PubMed Central  PubMed  Google Scholar 

  141. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    CAS  PubMed  Google Scholar 

  142. Cooke JD, Cavender HM, Lima HK, Grover LM. Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus. Psychopharmacology (Berl). 2014;231:4429–41.

    CAS  Google Scholar 

  143. Tanti A, Belzung C. Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience. 2013;252:234–52.

    CAS  PubMed  Google Scholar 

  144. Okamoto H, Voleti B, Banasr M, et al. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry. 2010;68:521–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Leu B, Koch E, Schmidt JT. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish. Dev Neurobiol. 2010;70:897–911.

    CAS  PubMed  Google Scholar 

  146. Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA. 2013;19:1019–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Pechnick RN, Zonis S, Wawrowsky K, et al. Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS One. 2011;6, e27290.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Epp JR, Beasley CL, Galea LA. Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure. Neuropsychopharmacology. 2013;38:2297–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Pedram A, Razandi M, Deschenes RJ, Levin ER. DHHC-7 and −21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell. 2012;23:188–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Ooishi Y, Kawato S, Hojo Y, et al. Modulation of synaptic plasticity in the hippocampus by hippocampus-derived estrogen and androgen. J Steroid Biochem Mol Biol. 2012;131:37–51.

    CAS  PubMed  Google Scholar 

  151. Parker G, Brotchie H. Gender differences in depression. Int Rev Psychiatry. 2010;22:429–36.

    PubMed  Google Scholar 

  152. Tamasi V, Petschner P, Adori C, et al. Transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also glutatmatergic- and insulin-mediated neuronal processes. PLoS One. 2014;9, e113662.

    PubMed Central  PubMed  Google Scholar 

  153. Jin M, Wang XM, Tu Y, et al. The negative cell cycle regulator, Tob (transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory. Neuroscience. 2005;131:647–59.

    CAS  PubMed  Google Scholar 

  154. Liu X, Bates R, Yin DM, et al. Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci. 2011;31:8491–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Gerstein H, O’Riordan K, Osting S, Schwarz M, Burger C. Rescue of synaptic plasticity and spatial learning deficits in the hippocampus of Homer1 knockout mice by recombinant adeno-associated viral gene delivery of Homer1c. Neurobiol Learn Mem. 2012;97:17–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Serretti A, Olgiati P, Bajo E, Bigelli M, De Ronchi D. A model to incorporate genetic testing (5-HTTLPR) in pharmacological treatment of major depressive disorders. World J Biol Psychiatry. 2011;12:501–15.

    PubMed  Google Scholar 

  157. Winner J, Allen JD, Altar CA, Spahic-Mihajlovic A. Psychiatric pharmacogenomics predicts health resource utilization of outpatients with anxiety and depression. Transl Psychiatry. 2013;3:e242. The first study demonstrating that genotyping can impact on health resource utilization in anxiety and depressive disorders treated with antidepressants.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Breitenstein B, Scheuer S, Pfister H, et al. The clinical application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Spectr. 2014;19:165–75. The first study demonstrating that a treatment algorithm based on ABCB1 genotyping is able to improve antidepressant treatment outcome in major depression.

    PubMed  Google Scholar 

  159. Laje G, McMahon FJ. Genome-wide association studies of antidepressant outcome: a brief review. Prog Neuropsychopharmacol Biol Psychiatry. 2010.

  160. Shen X, Carlborg O. Beware of risk for increased false positive rates in genome-wide association studies for phenotypic variability. Front Genet. 2013;4:93.

    PubMed Central  PubMed  Google Scholar 

  161. Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    CAS  PubMed  Google Scholar 

  162. Fabbri C, Minarini A, Niitsu T, Serretti A. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol. 2014;10:1093–118.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Chiara Fabbri declares no conflict of interest.

Alessandro Serretti is or has been a consultant/speaker for Abbott, Astra Zeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Janssen, Lundbeck, Pfizer, Sanofi, and Servier.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Serretti.

Additional information

This article is part of the Topical Collection on Genetic Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, C., Serretti, A. Pharmacogenetics of Major Depressive Disorder: Top Genes and Pathways Toward Clinical Applications. Curr Psychiatry Rep 17, 50 (2015). https://doi.org/10.1007/s11920-015-0594-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0594-9

Keywords

Navigation