Skip to main content
Log in

Piperacillin-Tazobactam in Intensive Care Units: A Review of Population Pharmacokinetic Analyses

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Piperacillin-tazobactam is a potent β-lactam/β-lactamase inhibitor antibiotic commonly prescribed in the intensive care unit setting. Admitted patients often show large variability in treatment response due to multiple pathophysiological changes present in this population that alter the drug’s pharmacokinetics. This review summarizes the population pharmacokinetic models developed for piperacillin-tazobactam and provides comprehensive data on current dosing strategies while identifying significant covariates in critically ill patients. A literature search on the PubMed database was conducted, from its inception to July 2020. Relevant articles were retained if they met the defined inclusion/exclusion criteria. A total of ten studies, published between 2009 and 2020, were eligible. One- and two-compartment models were used in two and eight studies, respectively. The lowest estimated piperacillin clearance value was 3.12 L/h, and the highest value was 19.9 L/h. The estimations for volume of distribution varied between 11.2 and 41.2 L. Tazobactam clearance values ranged between 5.1 and 6.78 L/h, and tazobactam volume of distribution values ranged between 17.5 and 76.1 L. The most frequent covariates were creatinine clearance and body weight, each present in four studies. Almost all studies used an exponential approach for the interindividual variability. The highest variability was observed in piperacillin central volume of distribution, at a value of 75.0%. Simulations showed that continuous or extended infusion methods performed better than intermittent administration to achieve appropriate pharmacodynamic targets. This review synthesizes important pharmacokinetic elements for piperacillin-tazobactam in an intensive care unit setting. This will help clinicians better understand changes in the drug’s pharmacokinetic parameters in this specific population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Landersdorfer CB, Bulitta JB, Kirkpatrick CM, Kinzig M, Holzgrabe U, Drusano GL, Stephan U, Sörgel F. Population pharmacokinetics of piperacillin at two dose levels: influence of nonlinear pharmacokinetics on the pharmacodynamic profile. Antimicrob Agents Chemother. 2012;56(11):5715–23. https://doi.org/10.1128/AAC.00937-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201. https://doi.org/10.1128/CMR.00037-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hayashi Y, Roberts JA, Paterson DL, Lipman J. Pharmacokinetic evaluation of piperacillin-tazobactam. Expert Opin Drug Metab Toxicol. 2010;6(8):1017–31. https://doi.org/10.1517/17425255.2010.506187.

    Article  CAS  PubMed  Google Scholar 

  4. European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA: Annual epidemiological report for 2018. 2018. https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-EU-EEA.pdf.

  5. Cotteret C, Vallières E, Roy H, Ovetchkine P, Longtin J, Bussières JF. Antibiotic consumption and bacterial sensitivity in a teaching hospital: a 5-year study [in French]. Arch Pediatr. 2016;23(10):1040–9. https://doi.org/10.1016/j.arcped.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  6. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10. https://doi.org/10.1086/516284 (quiz 11-2).

  7. Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit Care. 2019;23(1):104. https://doi.org/10.1186/s13054-019-2378-9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient–concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;77:3–11. https://doi.org/10.1016/j.addr.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  9. Tängdén T, Ramos Martín V, Felton TW, Nielsen EI, Marchand S, Brüggemann RJ, et al.; Infection Section for the European Society of Intensive Care Medicine, the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases, the International Society of Anti-Infective Pharmacology and the Critically Ill Patients Study Group of European Society of Clinical Microbiology and Infectious Diseases. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med. 2017;43(7):1021-1032. https://doi.org/10.1007/s00134-017-4780-6.

  10. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51. https://doi.org/10.1097/CCM.0b013e3181961bff.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 2012;73(1):27–36. https://doi.org/10.1111/j.1365-2125.2011.04080.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Infection Section of European Society of Intensive Care Medicine (ESICM). Pharmacokinetic/pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID); Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT); Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC). Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46(6):1127-1153. https://doi.org/10.1007/s00134-020-06050-1.

  13. MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L, Barchuk W. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis. 2004;38(2):284–8. https://doi.org/10.1086/379825.

    Article  PubMed  Google Scholar 

  14. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al.; International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509. https://doi.org/10.1016/S1473-3099(14)70036-2.

  15. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al.; DALI Study. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83. https://doi.org/10.1093/cid/ciu027.

  16. Richter DC, Frey O, Röhr A, Roberts JA, Köberer A, Fuchs T, et al. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: a retrospective analysis of four years of clinical experience. Infection. 2019;47(6):1001–11. https://doi.org/10.1007/s15010-019-01352-z.

    Article  CAS  PubMed  Google Scholar 

  17. Bloos F, Rüddel H, Thomas-Rüddel D, Schwarzkopf D, Pausch C, Harbarth S, et al.; MEDUSA study group. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med. 2017;43(11):1602-1612. htthttps://doi.org/10.1007/s00134-017-4782-4

  18. Hayashi Y, Lipman J, Udy AA, Ng M, McWhinney B, Ungerer J, et al. β-Lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents. 2013;41(2):162–6. https://doi.org/10.1016/j.ijantimicag.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  19. Muller AE, Huttner B, Huttner A. Therapeutic drug monitoring of beta-lactams and other antibiotics in the intensive care unit: which agents, which patients and which infections? Drugs. 2018;78:439–51. https://doi.org/10.1007/s40265-018-0880-z.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts JA, Kirkpatrick CMJ, Lipman J. Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother. 2011;66(2):227–31. https://doi.org/10.1093/jac/dkq449.

    Article  CAS  PubMed  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLOS Med.2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

  22. Asín-Prieto E, Rodríguez-Gascón A, Trocóniz IF, Soraluce A, Maynar J, Sánchez-Izquierdo JÁ, et al. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother. 2014;69(1):180–9. https://doi.org/10.1093/jac/dkt304.

    Article  CAS  PubMed  Google Scholar 

  23. Bue M, Sou T, Okkels ASL, Hanberg P, Thorsted A, Friberg LE, et al. Population pharmacokinetics of piperacillin in plasma and subcutaneous tissue in patients on continuous renal replacement therapy. Int J Infect Dis. 2020;92:133–40. https://doi.org/10.1016/j.ijid.2020.01.010.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts DM, Liu X, Roberts JA, et al. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit Care. 2015. https://doi.org/10.1186/s13054-015-0818-8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tamme K, Oselin K, Kipper K, Tasa T, Metsvaht T, Karjagin J, et al. Pharmacokinetics and pharmacodynamics of piperacillin/tazobactam during high volume haemodiafiltration in patients with septic shock. Acta Anaesthesiol Scand. 2016;60(2):230–40. https://doi.org/10.1111/aas.12629.

    Article  CAS  PubMed  Google Scholar 

  26. Ulldemolins M, Martín-Loeches I, Llauradó-Serra M, Fernández J, Vaquer S, Rodríguez A, et al. Piperacillin population pharmacokinetics in critically ill patients with multiple organ dysfunction syndrome receiving continuous venovenous haemodiafiltration: effect of type of dialysis membrane on dosing requirements. J Antimicrob Chemother. 2016;71(6):1651–9. https://doi.org/10.1093/jac/dkv503.

    Article  CAS  PubMed  Google Scholar 

  27. Öbrink-Hansen K, Juul RV, Storgaard M, Thomsen MK, Hardlei TF, Brock B, et al. Population pharmacokinetics of piperacillin in the early phase of septic shock: does standard dosing result in therapeutic plasma concentrations? Antimicrob Agents Chemother. 2015;59(11):7018–26. https://doi.org/10.1128/AAC.01347-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts JA, Kirkpatrick CM, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents. 2009;35(2):156–63. https://doi.org/10.1016/j.ijantimicag.2009.10.008.

    Article  CAS  PubMed  Google Scholar 

  29. Sukarnjanaset W, Jaruratanasirikul S, Wattanavijitkul T. Population pharmacokinetics and pharmacodynamics of piperacillin in critically ill patients during the early phase of sepsis. J Pharmacokinet Pharmacodyn. 2019;46:251–61. https://doi.org/10.1007/s10928-019-09633-8.

    Article  CAS  PubMed  Google Scholar 

  30. Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K, et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care. 2015;19(1):28. https://doi.org/10.1186/s13054-015-0750-y.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Klastrup V, Thorsted A, Storgaard M, Christensen S, Friberg LE, Öbrink-Hansen K. Population pharmacokinetics of piperacillin following continuous infusion in critically Ill patients and impact of renal function on target attainment. Antimicrob Agents Chemother. 2020;64(7):e02556-e2619. https://doi.org/10.1128/AAC.02556-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Chen Y, Li Q, Cao D, Shi W, Cao Y, et al. Population pharmacokinetics of piperacillin/tazobactam in neonates and young infants. Eur J Clin Pharmacol. 2013;69(6):1223–33. https://doi.org/10.1007/s00228-012-1413-4.

    Article  CAS  PubMed  Google Scholar 

  33. Delattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10–11):780–6. https://doi.org/10.1016/j.clinbiochem.2012.03.030.

    Article  CAS  PubMed  Google Scholar 

  34. Cies JJ, Shankar V, Schlichting C, Kuti JL. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children. Pediatr Infect Dis J. 2014;33(2):168–73. https://doi.org/10.1097/INF.0b013e3182a743c7.

    Article  PubMed  Google Scholar 

  35. Akers KS, Niece KL, Chung KK, Cannon JW, Cota JM, Murray CK. Modified Augmented Renal Clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S163–70. https://doi.org/10.1097/TA.0000000000000191.

    Article  PubMed  Google Scholar 

  36. Felton TW, Roberts JA, Lodise TP, Van Guilder M, Boselli E, Neely MN, et al. Individualization of piperacillin dosing for critically ill patients: dosing software to optimize antimicrobial therapy. Antimicrob Agents Chemother. 2014;58(7):4094–102. https://doi.org/10.1128/AAC.02664-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Felton TW, McCalman K, Malagon I, Isalska B, Whalley S, Goodwin J, et al. Pulmonary penetration of piperacillin and tazobactam in critically ill patients. Clin Pharmacol Ther. 2014;96(4):438–48. https://doi.org/10.1038/clpt.2014.131.

    Article  CAS  PubMed  Google Scholar 

  38. Nichols K, Chung EK, Knoderer CA, Buenger LE, Healy DP, Dees J, et al. Population pharmacokinetics and pharmacodynamics of extended-infusion piperacillin and tazobactam in critically Ill children. Antimicrob Agents Chemother. 2015;60(1):522–31. https://doi.org/10.1128/AAC.02089-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai D, Stewart P, Goud R, Gourley S, Hewagama S, Krishnaswamy S, et al. Pharmacokinetics of piperacillin in critically Ill Australian indigenous patients with severe sepsis. Antimicrob Agents Chemother. 2016;60(12):7402–6. https://doi.org/10.1128/AAC.01657-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother. 2017;61(3):e01276-e1316. https://doi.org/10.1128/AAC.01276-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Cock PAJG, van Dijkman SC, de Jaeger A, Willems J, Carlier M, Verstraete AG, et al. Dose optimization of piperacillin/tazobactam in critically ill children. J Antimicrob Chemother. 2017;72(7):2002–11. https://doi.org/10.1093/jac/dkx093.

    Article  CAS  PubMed  Google Scholar 

  42. Salerno S, Hornik CP, Cohen-Wolkowiez M, Smith PB, Ku LC, Kelly MS, et al., Best Pharmaceuticals for Children Act–Pediatric Trials Network Steering Committee. Use of population pharmacokinetics and electronic health records to assess piperacillin-tazobactam safety in infants. Pediatr Infect Dis J. 2017;36(9):855-859. https://doi.org/10.1097/INF.0000000000001610.

  43. Dhaese SAM, Roberts JA, Carlier M, Verstraete AG, Stove V, De Waele JJ. Population pharmacokinetics of continuous infusion of piperacillin in critically ill patients. Int J Antimicrob Agents. 2018;51(4):594–600. https://doi.org/10.1016/j.ijantimicag.2017.12.015.

    Article  CAS  PubMed  Google Scholar 

  44. Felton TW, Ogungbenro K, Boselli E, Hope WW, Rodvold KA. Comparison of piperacillin exposure in the lungs of critically ill patients and healthy volunteers. J Antimicrob Chemother. 2018;73(5):1340–7. https://doi.org/10.1093/jac/dkx541.

    Article  CAS  PubMed  Google Scholar 

  45. Kanji S, Roberts JA, Xie J, Alobaid A, Zelenitsky S, Hiremath S, et al. Piperacillin population pharmacokinetics in critically ill adults during sustained low-efficiency dialysis. Ann Pharmacother. 2018;52(10):965–73. https://doi.org/10.1177/1060028018773771.

    Article  CAS  PubMed  Google Scholar 

  46. Béranger A, Benaboud S, Urien S, Moulin F, Bille E, Lesage F, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically ill children with normal and augmented renal clearance. Clin Pharmacokinet. 2019;58(2):223–33. https://doi.org/10.1007/s40262-018-0682-1.

    Article  CAS  PubMed  Google Scholar 

  47. Rudnick W, Science M, Thirion DJG, et al. Antimicrobial use among adult inpatients at hospital sites within the Canadian Nosocomial Infection Surveillance Program: 2009 to 2016. Antimicrob Resist Infect Control. 2020;9(1):32. https://doi.org/10.1186/s13756-020-0684-2.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fowler RA, Sabur N, Li P, Juurlink DN, Pinto R, Hladunewich MA, et al. Sex-and age-based differences in the delivery and outcomes of critical care. CMAJ. 2007;177(12):1513–9. https://doi.org/10.1503/cmaj.071112.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Romo H, Amaral AC, Vincent JL. Effect of patient sex on intensive care unit survival. Arch Intern Med. 2004;164(1):61–5. https://doi.org/10.1001/archinte.164.1.61.

    Article  PubMed  Google Scholar 

  50. Reinikainen M, Niskanen M, Uusaro A, Ruokonen E. Impact of gender on treatment and outcome of ICU patients. Acta Anaesthesiol Scand. 2005;49(7):984–90. https://doi.org/10.1111/j.1399-6576.2005.00759.x.

    Article  CAS  PubMed  Google Scholar 

  51. O’Brien Z, Cass A, Cole L, et al. Sex and mortality in septic severe acute kidney injury. J Crit Care. 2019;49:70–6. https://doi.org/10.1016/j.jcrc.2018.10.017.

    Article  PubMed  Google Scholar 

  52. Sörgel F, Kinzig M. Pharmacokinetic characteristics of piperacillin/tazobactam. Intensive Care Med. 1994;20(Suppl 3):S14-20. https://doi.org/10.1007/BF01745246.

    Article  PubMed  Google Scholar 

  53. Bulitta JB, Kinzig M, Jakob V, Holzgrabe U, Sörgel F, Holford NH. Nonlinear pharmacokinetics of piperacillin in healthy volunteers–implications for optimal dosage regimens. Br J Clin Pharmacol. 2010;70(5):682–93. https://doi.org/10.1111/j.1365-2125.2010.03750.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Schepper PJ, Tjandramaga TB, Mullie A, Verbesselt R, van Hecken A, Verberckmoes R, et al. Comparative pharmacokinetics of piperacillin in normals and in patients with renal failure. J Antimicrob Chemother. 1982;9(Suppl B):49–57. https://doi.org/10.1093/jac/9.suppl_b.49.

    Article  PubMed  Google Scholar 

  55. Arzuaga A, Maynar J, Gascón AR, Isla A, Corral E, Fonseca F, et al. Influence of renal function on the pharmacokinetics of piperacillin/tazobactam in intensive care unit patients during continuous venovenous hemofiltration. J Clin Pharmacol. 2020;45(2):168–76. https://doi.org/10.1177/0091270004269796.

    Article  CAS  Google Scholar 

  56. Pistolesi V, Morabito S, Di Mario F, Regolisti G, Cantarelli C, Fiaccadori E. A guide to understanding antimicrobial drug dosing in critically ill patients on renal replacement therapy. Antimicrob Agents Chemother. 2019;63(8):e00583-e619. https://doi.org/10.1128/AAC.00583-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen IH, Nicolau DP. Augmented renal clearance and how to augment antibiotic dosing. Antibiotics (Basel). 2020;9(7):393. https://doi.org/10.3390/antibiotics9070393.

    Article  CAS  PubMed Central  Google Scholar 

  58. Jelliffe R. Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol. 2002;22(4):320–4. https://doi.org/10.1159/000065221.

    Article  PubMed  Google Scholar 

  59. Taccone FS, Laterre PF, Dugernier T, Spapen H, Delattre I, Wittebole X, et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14(4):R126. https://doi.org/10.1186/cc9091.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Seyler L, Cotton F, Taccone FS, De Backer D, Macours P, Vincent JL, et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011;15(3):R137. https://doi.org/10.1186/cc10257.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu Q, Rand K, Derendorf H. Impact of tazobactam pharmacokinetics on the antimicrobial effect of piperacillin-tazobactam combinations. Int J Antimicrob Agents. 2004;23(5):494–7. https://doi.org/10.1016/j.ijantimicag.2003.10.012.

    Article  CAS  PubMed  Google Scholar 

  62. Nicasio AM, VanScoy BD, Mendes RE, et al. Pharmacokinetics-pharmacodynamics of tazobactam in combination with piperacillin in an in vitro Infection Model. Antimicrob Agents Chemother. 2016;60(4):2075–80. https://doi.org/10.1128/AAC.02747-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalaria SN, Gopalakrishnan M, Heil EL. A population pharmacokinetics and pharmacodynamic approach to optimize tazobactam activity in critically ill patients. Antimicrob Agents Chemother. 2020;64(3):e02093-e2119. https://doi.org/10.1128/AAC.02093-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Komuro M, Maeda T, Kakuo H, Matsushita H, Shimada J. Inhibition of the renal excretion of tazobactam by piperacillin. J Antimicrob Chemother. 1994;34(4):555–64. https://doi.org/10.1093/jac/34.4.555.

    Article  CAS  PubMed  Google Scholar 

  65. Lodise TP, Lomaestro BM, Drusano GL, Society of Infectious Diseases Pharmacists. Application of antimicrobial pharmacodynamic concepts into clinical practice: focus on beta-lactam antibiotics: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2006;26(9):1320–32. https://doi.org/10.1592/phco.26.9.1320.

  66. Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock–does the dose matter? Crit Care. 2009;13(3):214. https://doi.org/10.1186/cc7774.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Abdul-Aziz MH, Dulhunty JM, Bellomo R, Lipman J, Roberts JA. Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care. 2012;2(1):37. https://doi.org/10.1186/2110-5820-2-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56(2):272–82. https://doi.org/10.1093/cid/cis857.

    Article  CAS  PubMed  Google Scholar 

  69. Roberts JA, Lipman J, Blot S, Rello J. Better outcomes through continuous infusion of time-dependent antibiotics to critically ill patients? Curr Opin Crit Care. 2008;14(4):390–6. https://doi.org/10.1097/MCC.0b013e3283021b3a.

    Article  PubMed  Google Scholar 

  70. Fawaz S, Barton S, Nabhani-Gebara S. Comparing clinical outcomes of piperacillin-tazobactam administration and dosage strategies in critically ill adult patients: a systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):430. https://doi.org/10.1186/s12879-020-05149-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, et al., BLING II Investigators for the ANZICS Clinical Trials Group *. A Multicenter Randomized Trial of Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. Am J Respir Crit Care Med. 2015;192(11):1298–305. https://doi.org/10.1164/rccm.201505-0857OC.

  72. Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42(10):1535–45. https://doi.org/10.1007/s00134-015-4188-0(Epub2016).

    Article  CAS  PubMed  Google Scholar 

  73. Lipman J, Brett SJ, De Waele JJ, Cotta MO, Davis JS, Finfer S, et al. A protocol for a phase 3 multicentre randomised controlled trial of continuous versus intermittent β-lactam antibiotic infusion in critically ill patients with sepsis: BLING III. Crit Care Resusc. 2019;21(1):63–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim El-Haffaf.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of Interest

Ibrahim El-Haffaf received a scholarship from Université de Montréal. Amélie Marsot acknowledges support from the Fonds de Recherche du Québec-Santé (FRQS) Research Scholars – Junior 1 (Young Researcher Establishment) Career Scholarship and the Fonds Servier – Faculty of Pharmacy, Université de Montréal. Jean-Alexandre Caissy has no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data was collected from the already published articles in the literature. Data generated to realize the various graphical analysis are not publicly available.

Code availability

Not applicable.

Author’s contributions

IE analyzed the data. IE wrote the manuscript. JC and AM validated the manuscript. AM supervised the work. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Haffaf, I., Caissy, JA. & Marsot, A. Piperacillin-Tazobactam in Intensive Care Units: A Review of Population Pharmacokinetic Analyses. Clin Pharmacokinet 60, 855–875 (2021). https://doi.org/10.1007/s40262-021-01013-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-021-01013-1

Navigation