Skip to main content
Log in

Population pharmacokinetics and pharmacodynamics of piperacillin in critically ill patients during the early phase of sepsis

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This study aimed to characterize the population pharmacokinetics (PKs) of piperacillin and investigate probability of target attainment (PTA) and cumulative fraction of response (CFR) of various dosage regimens in critically ill patients during the early phase of sepsis. Forty-eight patients treated with piperacillin/tazobactam were recruited. Five blood samples were drawn before and during 0–0.5, 0.5–2, 2–4 and 4–6 or 8 h after administration. Population PKs was analyzed using NONMEM®. The PTA of 90%fT>MIC target and CFR were determined by Monte Carlo simulation. The two compartment model best described the data. Piperacillin clearance (CL) was 5.37 L/h, central volume of distribution (V1) was 9.35 L, and peripheral volume of distribution was 7.77 L. Creatinine clearance (CLCr) and mean arterial pressure had a significant effect on CL while adjusted body weight had a significant impact on V1. Subtherapeutic concentrations can occur during the early phase of sepsis in critically ill patients with normal renal function. The usual dosage regimen, 4 g of piperacillin infused over 0.5 h every 6 h, could not achieve the target for susceptible organisms with MIC 16 mg/L in patients with CLCr ≥ 60 mL/min. Our proposed regimen for the patients with CLCr 60-120 mL/min was an extended 2 h infusion of 4 g of piperacillin every 6 h. Most regimens provided CFR ≥ 90% for the E. coli infection while there was no dosage regimen achieved a CFR of 90% for the P. aeruginosa infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allison MG, Heil EL, Hayes BD (2017) Appropriate antibiotic therapy. Emerg Med Clin North Am 35:25–42

    Article  PubMed  Google Scholar 

  2. Tjandramaga TB, Mullie A, Verbesselt R, Schepper PJD, Verbist L (1978) Piperacillin: human pharmacokinetics after intravenous and intramuscular administration. Antimicrob Agents Chemother 14:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schepper PJD, Tjandramaga TB, Mullie A, Verbesselt R, Hecken AV, Verberckmoes R, Verbist L (1982) Comparative pharmacokinetics of piperacillin in normals and in patients with renal failure. J Antimicrob Chemother 9:49–57

    Article  PubMed  Google Scholar 

  4. Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158:831–847

    Article  CAS  PubMed  Google Scholar 

  5. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2:289–300

    Article  CAS  PubMed  Google Scholar 

  6. Zelenitsky S, Nash J, Weber Z, Iacovides H, Ariano R (2016) Targeted benefits of prolonged-infusion piperacillin-tazobactam in an in vitro infection model of Pseudomonas aeruginosa. J Chemother 28:390–394

    Article  CAS  PubMed  Google Scholar 

  7. Pea F, Viale P (2009) Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock - does the dose matter? Crit Care 13:214–226

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zelenitsky SA, Ariano RE, Zhanel GG (2011) Pharmacodynamics of empirical antibiotic monotherapies for an intensive care unit (ICU) population based on Canadian surveillance data. J Antimicrob Chemother 66:343–349

    Article  CAS  PubMed  Google Scholar 

  9. Kong L, Tang Y, Zhang X, Lu G, Yu M, Shi Q, Wu X (2017) Pharmacokinetic/pharmacodynamic analysis of meropenem for the treatment of nosocomial pneumonia in intracerebral hemorrhage patients by monte carlo simulation. Ann Pharmacother 51:970–975

    Article  CAS  PubMed  Google Scholar 

  10. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K (2016) Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am J Respir Crit Care Med 193:259–272

    Article  CAS  PubMed  Google Scholar 

  12. Vincent JL, Marshall JC, Ñamendys Silva SA, Franois B, Martin-Loeches I, Lipman J, Reinhart K, Antonelli M, Pickkers P, Nijmi H, Jimenez E, Sakr Y (2014) Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. Lancet Respir Med 2:380–386

    Article  PubMed  Google Scholar 

  13. Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Tery KM, Levy MM (2017) Time to treatment and mortality during mandated emergency care for sepsis. New Engl J Med 376:2235–2244

    Article  PubMed  Google Scholar 

  14. Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichier HG, Muller M (2001) Impaired target site penetration of b-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29:385–391

    Article  CAS  PubMed  Google Scholar 

  15. Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Piperacillin penetration into tissue of critically ill patients with sepsis-bolus versus continuous administration? Crit Care Med 37:926–933

    Article  PubMed  Google Scholar 

  16. Taccone FS, Laterre PF, Dugernier T, Spapen H, Delattre I, Wittebole X, Backer D, Layeux B, Wallemacq P, Vincent JL, Jacobs F (2010) Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 14:R126–R134

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roberts JA, Kirkpatrick CMJ, Roberts MS, Dalley AJ, Lipman J (2010) First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents 35:156–163

    Article  CAS  PubMed  Google Scholar 

  18. Sturm AW, Allen N, Rafferty KD, Fish DN, Toschlog E, Newell M, Waibel B (2014) Pharmacokinetic analysis of piperacillin administered with tazobactam in critically ill, morbidly obese surgical patients. Pharmacotherapy 34:28–35

    Article  CAS  PubMed  Google Scholar 

  19. Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K, Kirkpatrick CMJ, Kruger PS, Paterson DL, Roberts MS, Roberts JA (2015) Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 19:28

    Article  PubMed  PubMed Central  Google Scholar 

  20. Obrink-Hansen K, Juul RV, Storgaard M, Thomsen MK, Hardlei TF, Brock B, Kreilgaard M, Gjedsted (2015) Population pharmacokinetics of piperacillin in the early phase of septic shock: does standard dosing result in therapeutic plasma concentrations? Antimicrob Agents Chemother 59:7018–7026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsai D, Stewart P, Goud R, Gourley S, Hewagama S, Krishnaswamy S, Wallis SC, Lipman J, Roberts JA (2016) Pharmacokinetics of piperacillin in critically ill australian indigenous patients with severe sepsis. Antimicrob Agents Chemother 60:7402–7406

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hobbs AL, Shea KM, Roberts KM, Daley MJ (2015) Implications of augmented renal clearance on drug dosing in critically ill patients: a focus on antibiotics. Pharmacotherapy 35:1063–1075

    Article  CAS  PubMed  Google Scholar 

  23. Andersen MG, Thorsted A, Storgaard M, Kristoffersson AN, Friberg LE, Obink-Hansen K (2018) Population pharmacokinetics of piperacillin in sepsis patients: should alternative dosing strategies be considered? Antimicrob Agents Chemother 62:e02306–e02317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Giovamberardino G, Ferrannini M, Testore GP, Federici G, Pastore A (2009) High performance liquid chromatographic determination of plasma free and total tazobactam and piperacillin. J Chromatogr B 877:86–88

    Article  CAS  Google Scholar 

  25. Sukarnjanaset W, Wattanavijitkul T, Jarurattanasirikul S (2018) Evaluation of FOCEI and SAEM estimation methods in population pharmacokinetic analysis using NONMEM® across rich, medium, and sparse sampling data. Eur J Drug Metab Pharmacokinet 1:1–10. https://doi.org/10.1007/s13318-018-0484-8

    Article  CAS  Google Scholar 

  26. Wurtz R, Itokazu G, Rodvold K (1997) Antimicrobial dosing in obese patients. Clin Infect Dis 25:112–118

    Article  CAS  PubMed  Google Scholar 

  27. Jelliffe R (2002) Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol 22:320–324

    Article  PubMed  Google Scholar 

  28. European Committee on Antimicrobial Susceptibility Testing (2018) Antimicrobial wild type distributions of microorganisms, version 5.26. https://mic.eucast.org/Eucast2/. Accessed 1 Aug 2018

  29. Zheng L, Sun Z, Li J, Zhang R, Zhang X, Liu S, Li J, Xu C, Hu D, Sun Y (2008) Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of China. Stroke 39:1932–1937

    Article  PubMed  Google Scholar 

  30. Kim YK, Jung JA, Choi HK, Bae IG, Choi WS, Hur J, Jin SJ, Kim SW, Kwon KT, Lee SR, Shin JG, Kiem S, pharmacokinetics-pharmacodynamics of antibiotics working group under korean society for chemotherapy (2016) Population pharmacokinetic analysis of piperacillin/tazobactam in korean patients with acute infections. Inf Chemother 48:209–215

    Article  CAS  Google Scholar 

  31. Chen R, Qian Q, Sun MR, QianCY Zou SI, Wang ML, Wang LY (2016) Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with nosocomial infections. Eur J Drug Metab Pharmacokinet 41:363–372

    Article  CAS  PubMed  Google Scholar 

  32. Chung EK, Cheatham SC, Fleming MR, Healy DP, Shea KM, Kays MB (2015) Population pharmacokinetics and pharmacodynamics of piperacillin and tazobactam administered by prolonged infusion in obese and nonobese patients. J Clin Pharmacol 55:899–908

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Kuti JL, Nightingale CH, Mansfield DL, Dana A, Nicolau DP (2005) Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with complicated intra-abdominal infection. J Antimicrob Chemother 56:388–395

    Article  CAS  PubMed  Google Scholar 

  34. Alobaid AS, Hites M, Lipman J, Taccone FS, Roberts JA (2016) Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review. Int J Antimicrob Agents 47:259–268

    Article  CAS  PubMed  Google Scholar 

  35. Abdul-Aziz MH, Dulhunty JM, Bellomo R, Lipman J, Roberts JA (2012) Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care 2:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, Mejia JLO, Roberts MS, Roger C, Udy AA, Lipman J, Roberts JA (2017) Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother 61:1–12

    Article  Google Scholar 

  37. Vojtová V, Kolár M, Hricová K, Uvizl R, Neiser J, Blahut L, Urbanek K (2011) Antibiotic utilization and Pseudomonas aeruginosa resistance in intensive care units. New Microbiol 34:291–298

    PubMed  Google Scholar 

  38. Bochud PY, Glauser MP, Carlet J, Calandra T (2002) Empirical antibiotic therapy for patients with severe sepsis and septic shock. In: Vincent JL, Carlet J, Opal SM (eds) The sepsis text. Kluwer Academic Publishers, Boston, pp 539–558

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by a faculty grant from the Faculty of Medicine, Prince of Songkla University and Chulalongkorn University graduate school thesis grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutep Jaruratanasirikul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Institutional Review Board (IRB) of the Faculty of Medicine, Prince of Songkla University (EC; 56-501-14-1). The authorized researchers were granted the right to extract the data from the database.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukarnjanaset, W., Jaruratanasirikul, S. & Wattanavijitkul, T. Population pharmacokinetics and pharmacodynamics of piperacillin in critically ill patients during the early phase of sepsis. J Pharmacokinet Pharmacodyn 46, 251–261 (2019). https://doi.org/10.1007/s10928-019-09633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-019-09633-8

Keywords

Navigation