Skip to main content
Log in

Pediatric Clinical Pharmacology of Voriconazole: Role of Pharmacokinetic/Pharmacodynamic Modeling in Pharmacotherapy

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Voriconazole is a potent antifungal agent used for the treatment of invasive fungal infections caused by Aspergillus and Candida species in adult and pediatric patients. Voriconazole has a narrow therapeutic index and a large intra- and inter-individual pharmacokinetics (PK) variability. Several factors including non-linear PK, age, body weight, cytochrome P450 2C19 genotype, concomitant drugs, liver function, and food are responsible for the large variability in voriconazole PK. A combination of a narrow therapeutic index with a large PK variability results in treatment failure in many patients at clinically recommended doses. There is an urgent need to establish an optimal dosing regimen for pediatric patients <2 years of age because of a lack of recommended dosing guidelines and high (>60 %) treatment failure rates. Therapeutic drug monitoring is commonly used in clinical practice to optimize the voriconazole dosing regimens in pediatric patients, but it is associated with several practical limitations. Implementation of a PK model-guided individualized dose selection will help in reducing the PK variability and will improve therapeutic outcomes. In this review, we have summarized the covariates influencing the PK of voriconazole in adult and pediatric patients, emphasizing that the clearance of voriconazole is significantly different between adult and pediatric patients owing to developmental changes in the major clearance pathways. Moreover, we have provided the limitations of the current dosing regimens and have proposed a new dosing method using a PK model-guided dose individualization of voriconazole in pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Singhi S, Deep A. Invasive candidiasis in pediatric intensive care units. Indian J Pediatr. 2009;76(10):1033–44.

    Article  PubMed  Google Scholar 

  2. Arendrup MC, Fisher BT, Zaoutis TE. Invasive fungal infections in the paediatric and neonatal population: diagnostics and management issues. Clin Microbiol Infect. 2009;15(7):613–24.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh TJ, Lutsar I, Driscoll T, Dupont B, Roden M, Ghahramani P, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis and other invasive fungal infections in children. Pediatr Infect Dis J. 2002;21(3):240–8.

    Article  PubMed  Google Scholar 

  4. Oren I, Paul M. Up to date epidemiology, diagnosis and management of invasive fungal infections. Clin Microbiol Infect. 2014;20(Suppl 6):1–4.

    Article  PubMed  Google Scholar 

  5. Steinbach WJ. Epidemiology of invasive fungal infections in neonates and children. Clin Microbiol Infect. 2010;16(9):1321–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004;17(3):638–80.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fluckiger U, Marchetti O, Bille J, Eggimann P, Zimmerli S, Imhof A, et al. Treatment options of invasive fungal infections in adults. Swiss Med Wkly. 2006;136(29–30):447–63.

    CAS  PubMed  Google Scholar 

  8. Groll AH, Shah PM, Mentzel C, Schneider M, Just-Nuebling G, Huebner K. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect. 1996;33(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  9. Pappas PG, Rotstein CM, Betts RF, Nucci M, Talwar D, De Waele JJ, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45(7):883–93.

    Article  CAS  PubMed  Google Scholar 

  10. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. New Engl J Med. 2002;347(6):408–15.

    Article  CAS  PubMed  Google Scholar 

  11. Shetty D, Giri N, Gonzalez CE, Pizzo PA, Walsh TJ. Invasive aspergillosis in human immunodeficiency virus-infected children. Pediatr Infect Dis J. 1997;16(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  12. Steinbach WJ. Antifungal agents in children. Pediatr Clin N Am. 2005;52(3):895–915 (viii).

    Article  Google Scholar 

  13. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327–60.

    Article  CAS  PubMed  Google Scholar 

  14. Bartelink IH, Wolfs T, Jonker M, de Waal M, Egberts TC, Ververs TT, et al. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother. 2013;57(1):235–40.

    Article  CAS  PubMed Central  Google Scholar 

  15. Spriet I, Cosaert K, Renard M, Uyttebroeck A, Meyts I, Proesmans M, et al. Voriconazole plasma levels in children are highly variable. Eur J Clin Microbiol Infect Dis. 2011;30(2):283–7.

    Article  CAS  PubMed  Google Scholar 

  16. Michael C, Bierbach U, Frenzel K, Lange T, Basara N, Niederwieser D, et al. Voriconazole pharmacokinetics and safety in immunocompromised children compared to adult patients. Antimicrob Agents Chemother. 2010;54(8):3225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada T, Mino Y, Yagi T, Naito T, Kawakami J. Saturated metabolism of voriconazole N-oxidation resulting in nonlinearity of pharmacokinetics of voriconazole at clinical doses. Biol Pharm Bull. 2015;38(10):1496–503.

    Article  CAS  PubMed  Google Scholar 

  18. Scholz I, Oberwittler H, Riedel KD, Burhenne J, Weiss J, Haefeli WE, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68(6):906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman AN, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41.

    Article  CAS  PubMed  Google Scholar 

  20. Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 2004;48(6):2166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. VFEND® (voriconazole). Tablets, IV powder for injection and powder for oral suspension. http://www.medsafe.govt.nz/profs/datasheet/v/Vfendtabinj.pdf. Accessed 10 Oct 2015

  22. Leveque D, Nivoix Y, Jehl F, Herbrecht R. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2006;27(4):274–84.

    Article  CAS  PubMed  Google Scholar 

  23. Purkins L, Wood N, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46(8):2546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartz S, Milatovic D, Thiel E. Successful treatment of cerebral aspergillosis with a novel triazole (voriconazole) in a patient with acute leukaemia. Br J Haematol. 1997;97(3):663–5.

    Article  CAS  PubMed  Google Scholar 

  25. Lutsar I, Roffey S, Troke P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin Infect Dis. 2003;37(5):728–32.

    Article  PubMed  Google Scholar 

  26. Bakleh M, Aksamit AJ, Tleyjeh IM, Marshall WF. Successful treatment of cerebral blastomycosis with voriconazole. Clin Infect Dis. 2005;40(9):e69–71.

    Article  PubMed  Google Scholar 

  27. Hariprasad SM, Mieler WF, Holz ER, Gao H, Kim JE, Chi J, et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch Ophthalmol. 2004;122(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  28. Reis A, Sundmacher R, Tintelnot K, Agostini H, Jensen HE, Althaus C. Successful treatment of ocular invasive mould infection (fusariosis) with the new antifungal agent voriconazole. Br J Ophthalmol. 2000;84(8):932–3.

    Article  CAS  PubMed  Google Scholar 

  29. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–7.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    Article  CAS  PubMed  Google Scholar 

  31. Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2016;56(3):266–83.

  32. Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm. 2013;452(1–2):3–7.

    Article  CAS  PubMed  Google Scholar 

  33. Allegaert K, van de Velde M, van den Anker J. Neonatal clinical pharmacology. Paediatr Anaesth. 2014;24(1):30–8.

    Article  PubMed  Google Scholar 

  34. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–74.

    Article  CAS  PubMed  Google Scholar 

  35. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.

    Article  PubMed  Google Scholar 

  36. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44.

    Article  CAS  PubMed  Google Scholar 

  37. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204.

    Article  CAS  PubMed  Google Scholar 

  38. Hicks JK, Crews KR, Flynn P, Haidar CE, Daniels CC, Yang W, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. Pharmacogenomics. 2014;15(8):1065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Cline Pharmacol. 2010;69(3):222–30.

    Article  CAS  Google Scholar 

  40. Wang G, Lei HP, Li Z, Tan ZR, Guo D, Fan L, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65(3):281–5.

    Article  CAS  PubMed  Google Scholar 

  41. Imamura CK, Furihata K, Okamoto S, Tanigawara Y. Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole. J Clin Pharmacol. 2015. doi:10.1002/jcph.605.

  42. Lee SJ. Clinical application of CYP2C19 pharmacogenetics toward more personalized medicine. Front Genet. 2012;3:318.

    PubMed  Google Scholar 

  43. Wang T, Zhu H, Sun J, Cheng X, Xie J, Dong H, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents. 2014;44(5):436–42.

    Article  CAS  PubMed  Google Scholar 

  44. Rengelshausen J, Banfield M, Riedel KD, Burhenne J, Weiss J, Thomsen T, et al. Opposite effects of short-term and long-term St John’s wort intake on voriconazole pharmacokinetics. Clin Pharmacol Ther. 2005;78(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  45. Ikeda Y, Umemura K, Kondo K, Sekiguchi K, Miyoshi S, Nakashima M. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther. 2004;75(6):587–8.

    Article  CAS  PubMed  Google Scholar 

  46. Narita A, Muramatsu H, Sakaguchi H, Doisaki S, Tanaka M, Hama A, et al. Correlation of CYP2C19 phenotype with voriconazole plasma concentration in children. J Pediatr Hematol Oncol. 2013;35(5):e219–23.

    Article  CAS  PubMed  Google Scholar 

  47. Bruggemann RJ, van der Linden JW, Verweij PE, Burger DM, Warris A. Impact of therapeutic drug monitoring of voriconazole in a pediatric population. Pediatr Infect Dis J. 2011;30(6):533–4.

    PubMed  Google Scholar 

  48. Walsh TJ, Driscoll T, Milligan PA, Wood ND, Schlamm H, Groll AH, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother. 2010;54(10):4116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Driscoll TA, Yu LC, Frangoul H, Krance RA, Nemecek E, Blumer J, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised children and healthy adults. Antimicrob Agents Chemother. 2011;55(12):5770–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neely M, Margol A, Fu X, van Guilder M, Bayard D, Schumitzky A, et al. Achieving target voriconazole concentrations more accurately in children and adolescents. Antimicrob Agents Chemother. 2015;59(6):3090–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goutelle S, Larcher R, Padoin C, Mialou V, Bleyzac N. Oral voriconazole dose in children: one size does not fit all. Clin Infect Dis. 2010;51(7):870 (author reply 1).

    Article  PubMed  Google Scholar 

  52. Liu P, Mould DR. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob Agents Chemother. 2014;58(8):4718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hope WW. Population pharmacokinetics of voriconazole in adults. Antimicrob Agents Chemotherapy. 2012;56(1):526–31.

    Article  CAS  Google Scholar 

  54. Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chem. 2014;69(2):463–70.

    Article  CAS  Google Scholar 

  55. Bruggemann RJ, Alffenaar JW, Blijlevens NM, Billaud EM, Kosterink JG, Verweij PE, et al. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis. 2009;48(10):1441–58.

    Article  PubMed  Google Scholar 

  56. Purkins L, Wood N, Kleinermans D, Nichols D. Voriconazole does not affect the steady-state pharmacokinetics of digoxin. Br J Clin Pharmacol. 2003;56(S1):145–50.

  57. Nivoix Y, Leveque D, Herbrecht R, Koffel JC, Beretz L, Ubeaud-Sequier G. The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet. 2008;47(12):779–92.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta A, Unadkat JD, Mao Q. Interactions of azole antifungal agents with the human breast cancer resistance protein (BCRP). J Pharm Sci. 2007;96(12):3226–35.

    Article  CAS  PubMed  Google Scholar 

  59. Andes D, Marchillo K, Stamstad T, Conklin R. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47(10):3165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen J, Chan C, Colantonio D, Seto W. Therapeutic drug monitoring of voriconazole in children. Ther Drug Monit. 2012;34(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  61. Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect. 2010;16(7):927–33.

    Article  CAS  PubMed  Google Scholar 

  62. Ueda K, Nannya Y, Kumano K, Hangaishi A, Takahashi T, Imai Y, et al. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. Int J Hematol. 2009;89(5):592–9.

    Article  CAS  PubMed  Google Scholar 

  63. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  64. Neely M, Rushing T, Kovacs A, Jelliffe R, Hoffman J. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis. 2010;50(1):27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choi SH, Lee SY, Hwang JY, Lee SH, Yoo KH, Sung KW, et al. Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with invasive aspergillosis. Pediatr Blood Cancer. 2013;60(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  66. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol. 2006;46(2):235–43.

  67. Denning DW, Ribaud P, Milpied N, Caillot D, Herbrecht R, Thiel E, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis. 2002;34(5):563–71.

    Article  CAS  Google Scholar 

  68. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T, et al. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents. 2009;34(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  69. Celik IH, Demirel G, Oguz SS, Uras N, Erdeve O, Dilmen U. Compassionate use of voriconazole in newborn infants diagnosed with severe invasive fungal sepsis. Eur Rev Med Pharmacol Sci. 2013;17:729–34.

    CAS  PubMed  Google Scholar 

  70. Kohli V, Taneja V, Sachdev P, Joshi R. Voriconazole in newborns. Indian Pediatr. 2008;45(3):236–8.

    PubMed  Google Scholar 

  71. Frankenbusch K, Eifinger F, Kribs A, Rengelshauseu J, Roth B. Severe primary cutaneous aspergillosis refractory to amphotericin B and the successful treatment with systemic voriconazole in two premature infants with extremely low birth weight. J Perinatol. 2006;26(8):511–4.

    Article  CAS  PubMed  Google Scholar 

  72. von Mach MA, Burhenne J, Weilemann LS. Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol. 2006;6:6.

    Article  Google Scholar 

  73. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55(8):1080–7.

    Article  CAS  PubMed  Google Scholar 

  74. Elewa H, El-Mekaty E, El-Bardissy A, Ensom MH, Wilby KJ. Therapeutic drug monitoring of voriconazole in the management of invasive fungal infections: a critical review. Clin Pharmacokinet. 2015;54(12):1223–35.

  75. Gage R, Stopher DA. A rapid HPLC assay for voriconazole in human plasma. J Pharm Biomed Anal. 1998;17(8):1449–53.

    Article  CAS  PubMed  Google Scholar 

  76. Perea S, Pennick GJ, Modak A, Fothergill AW, Sutton DA, Sheehan DJ, et al. Comparison of high-performance liquid chromatographic and microbiological methods for determination of voriconazole levels in plasma. Antimicrob Agents Chemother. 2000;44(5):1209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin D, Li G, Chen L. Determination of voriconazole in human plasma by HPLC-ESI-MS and application to pharmacokinetic study. J Chromatogr Sci. 2013;51(6):485–9.

    Article  CAS  PubMed  Google Scholar 

  78. Gogtay NJ, Kshirsagar NA, Dalvi SS. Therapeutic drug monitoring in a developing country: an overview. Br J Clin Pharmacol. 2001;52(Suppl 1):103S–8S.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dolton MJ, Mikus G, Weiss J, Ray JE, McLachlan AJ. Understanding variability with voriconazole using a population pharmacokinetic approach: implications for optimal dosing. J Antimicrob Chem. 2014;69(6):1633–41.

    Article  CAS  Google Scholar 

  81. Sandstrom M, Karlsson MO, Ljungman P, Hassan Z, Jonsson EN, Nilsson C, et al. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Transpl. 2001;28(7):657–64.

    Article  CAS  Google Scholar 

  82. Wallin JE, Friberg LE, Fasth A, Staatz CE. Population pharmacokinetics of tacrolimus in pediatric hematopoietic stem cell transplant recipients: new initial dosage suggestions and a model-based dosage adjustment tool. Ther Drug Monit. 2009;31(4):457–66.

    Article  CAS  PubMed  Google Scholar 

  83. Dombrowsky E, Jayaraman B, Narayan M, Barrett JS. Evaluating performance of a decision support system to improve methotrexate pharmacotherapy in children and young adults with cancer. Ther Drug Monit. 2011;33(1):99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wright DF, Duffull SB. Development of a bayesian forecasting method for warfarin dose individualization. Pharm Res. 2011;28(5):1100–11.

    Article  CAS  PubMed  Google Scholar 

  85. Wright DF, Duffull SB. A Bayesian dose-individualization method for warfarin. Clin Pharmacokinet. 2013;52(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  86. Wicha SG, Kloft C, Kees M, Solms A, Minichmayr I. TDMx. http://www.tdmx.eu/. Accessed 27 Oct 2015

  87. Goswami S, Keizer R, Mangat R. InsightRX: a cloud-based platform for precision dosing and clinical analytics. http://www.insight-rx.com/. Accessed 27 Oct 2015

  88. Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 2012;56(6):3032–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chung H, Lee H, Han H, An H, Lim KS, Lee Y, et al. A pharmacokinetic comparison of two voriconazole formulations and the effect of CYP2C19 polymorphism on their pharmacokinetic profiles. Drug Design Dev Ther. 2015;9:2609–16.

    Article  Google Scholar 

  90. Lee S, Kim BH, Nam WS, Yoon SH, Cho JY, Shin SG, et al. Effect of CYP2C19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2012;52(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  91. Shi HY, Yan J, Zhu WH, Yang GP, Tan ZR, Wu WH, et al. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol. 2010;66(11):1131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Levin MD, den Hollander JG, van der Holt B, Rijnders BJ, van Vliet M, Sonneveld P, et al. Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. J Antimicrob Chem. 2007;60(5):1104–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra S. Kadam.

Ethics declarations

The opinions expressed in this article are those of the authors and should not be interpreted as the position of InnoPharma Inc.

Rajendra Kadam is an employee of InnoPharma Inc., and declares no conflicts of interest that might be relevant to the contents of this manuscript. Johannes N. van den Anker declares that he has no potential conflicts of interests.

No sources of funding were used in the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, R.S., Van Den Anker, J.N. Pediatric Clinical Pharmacology of Voriconazole: Role of Pharmacokinetic/Pharmacodynamic Modeling in Pharmacotherapy. Clin Pharmacokinet 55, 1031–1043 (2016). https://doi.org/10.1007/s40262-016-0379-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0379-2

Keywords

Navigation