Skip to main content

Advertisement

Log in

Enhanced Corneal Absorption of Erythromycin by Modulating P-Glycoprotein and MRP Mediated Efflux with Corticosteroids

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objectives were (i) to test in vivo functional activity of MRP2 on rabbit corneal epithelium and (ii) to evaluate modulation of P-gp and MRP2 mediated efflux of erythromycin when co-administered with corticosteroids.

Methods

Cultured rabbit primary corneal epithelial cells (rPCECs) was employed as an in vitro model for rabbit cornea. Cellular accumulation and bi-directional transport studies were conducted across Madin-Darby Canine Kidney (MDCK) cells overexpressing MDR1 and MRP2 proteins to delineate transporter specific interaction of steroids. Ocular pharmacokinetic studies were conducted in rabbits following a single-dose infusion of erythromycin in the presence of specific inhibitors and steroids.

Results

Bi-directional transport of erythromycin across MDCK-MDR1 and MDCK-MRP2 cells showed significant difference between BL-AP and AP-BL permeability, suggesting that erythromycin is a substrate for P-gp and MRP2. Cellular accumulation of erythromycin in rPCEC was inhibited by steroids in a dose dependent manner. MK571, a specific MRP inhibitor, modulated the aqueous humor concentration of erythromycin in vivo. Even, steroids inhibited P-gp and MRP2 mediated efflux with maximum increase in k a, AUC0 − ∞, C max and C last values of erythromycin, observed with 6α-methyl prednisolone.

Conclusion

MRP2 is functionally active along with P-gp in effluxing drug molecules out of corneal epithelium. Steroids were able to significantly inhibit both P-gp and MRP2 mediated efflux of erythromycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP:

apical

AUC:

area under curve

BL:

basolateral

CsA:

cyclosporine A

Ery:

erythromycin

MDCK:

Madin-Darby Canine Kidney

MPL:

6α-methyl prednisolone

MRP:

multidrug resistance associated protein

P app :

apparent permeability

P-gp:

P-glycoprotein

PL:

prednisolone

PS:

prednisone

rPCEC:

rabbit primary corneal epithelial cell

References

  1. A. H. Schinkel, and J. W. Jonker. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev. 55:3–29 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. J. V. Aukunuru, G. Sunkara, N. Bandi, W. B. Thoreson, and U. B. Kompella. Expression of multidrug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm. Res. 18:565–572 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. P. A. Constable, J. G. Lawrenson, D. E. Dolman, G. B. Arden, and N. J. Abbott. P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp. Eye Res. 83:24–30 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. B. G. Kennedy, and N. J. Mangini. P-glycoprotein expression in human retinal pigment epithelium. Mol. Vis. 8:422–430 (2002).

    PubMed  CAS  Google Scholar 

  5. J. A. Holash, and P. A. Stewart. The relationship of astrocyte-like cells to the vessels that contribute to the blood-ocular barriers. Brain Res. 629:218–224 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. J. Shen, S. T. Cross, D. D. Tang-Liu, and D. F. Welty. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm. Res. 20:1357–1363 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. J. Wu, J. J. Zhang, H. Koppel, and T. J. Jacob. P-glycoprotein regulates a volume-activated chloride current in bovine non-pigmented ciliary epithelial cells. J. Physiol. 491(Pt 3):743–755 (1996).

    PubMed  CAS  Google Scholar 

  8. P. Saha, J. J. Yang, and V. H. Lee. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest. Ophthalmol. Vis. Sci. 39:1221–1226 (1998).

    PubMed  CAS  Google Scholar 

  9. S. Dey, J. Patel, B. S. Anand, B. Jain-Vakkalagadda, P. Kaliki, D. Pal, V. Ganapathy, and A. K. Mitra. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest. Ophthalmol. Vis. Sci. 44:2909–2918 (2003).

    Article  PubMed  Google Scholar 

  10. P. K. Karla, D. Pal, and A. K. Mitra. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells. Exp. Eye Res. 84:53–60 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. P. K. Karla, D. Pal, T. Quinn, and A. K. Mitra. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int. J. Pharm. 336:12–21 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. C. Seral, S. Carryn, P. M. Tulkens, and F. Van Bambeke. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J. Antimicrob. Chemother. 51:1167–1173 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. J. M. Michot, C. Seral, F. Van Bambeke, M. P. Mingeot-Leclercq, and P. M. Tulkens. Influence of efflux transporters on the accumulation and efflux of four quinolones (ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin) in J774 macrophages. Antimicrob. Agents Chemother. 49:2429–2437 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. K. Naruhashi, I. Tamai, N. Inoue, H. Muraoka, Y. Sai, N. Suzuki, and A. Tsuji. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob. Agents Chemother. 46:344–349 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. I. Tamai, J. Yamashita, Y. Kido, A. Ohnari, Y. Sai, Y. Shima, K. Naruhashi, S. Koizumi, and A. Tsuji. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J. Pharmacol. Exp. Ther. 295:146–152 (2000).

    PubMed  CAS  Google Scholar 

  16. D. A. Hesselink, R. M. van Hest, R. A. Mathot, F. Bonthuis, W. Weimar, R. W. de Bruin, and T. van Gelder. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant. 5:987–994 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. A. Sakata, I. Tamai, K. Kawazu, Y. Deguchi, T. Ohnishi, A. Saheki, and A. Tsuji. In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of cyclosporin A at the blood-brain barrier. Biochem. Pharmacol. 48:1989–1992 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. K. Ueda, N. Okamura, M. Hirai, Y. Tanigawara, T. Saeki, N. Kioka, T. Komano, and R. Hori. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267:24248–24252 (1992).

    PubMed  CAS  Google Scholar 

  19. E. Mannermaa, K. S. Vellonen, and A. Urtti. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv. Drug Deliv. Rev. 58:1136–1163 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. S. Dey, S. Gunda, and A. K. Mitra. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J. Pharmacol. Exp. Ther. 311:246–255 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. S. Katragadda, B. Budda, B. S. Anand, and A. K. Mitra. Role of efflux pumps and metabolising enzymes in drug delivery. Expert. Opin. Drug Deliv. 2:683–705 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. R. P. Kowalski, L. M. Karenchak, and E. G. Romanowski. Infectious disease: changing antibiotic susceptibility. Ophthalmol. Clin. North Am. 16:1–9 (2003).

    Article  PubMed  Google Scholar 

  23. C. Queille-Roussel, M. Poncet, S. Mesaros, A. Clucas, M. Baker, and A. M. Soloff. Comparison of the cumulative irritation potential of adapalene gel and cream with that of erythromycin/tretinoin solution and gel and erythromycin/isotretinoin gel. Clin. Ther. 23:205–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. V. H. Lee, and J. R. Robinson. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J. Pharm. Sci. 68:673–684 (1979).

    Article  PubMed  CAS  Google Scholar 

  25. M. C. Makoid, and J. R. Robinson. Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J. Pharm. Sci. 68:435–443 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. S. C. Miller, K. J. Himmelstein, and T. F. Patton. A physiologically based pharmacokinetic model for the intraocular distribution of pilocarpine in rabbits. J. Pharmacokinet. Biopharm. 9:653–677 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. M. G. Eller, R. D. Schoenwald, J. A. Dixson, T. Segarra, and C. F. Barfknecht. Topical carbonic anhydrase inhibitors IV: Relationship between excised corneal permeability and pharmacokinetic factors. J. Pharm. Sci. 74:525–529 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. K. D. Rittenhouse, and G. M. Pollack. Microdialysis and drug delivery to the eye. Adv. Drug Deliv. Rev. 45:229–241 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. S. Macha, and A. K. Mitra. Ocular pharmacokinetics in rabbits using a novel dual probe microdialysis technique. Exp. Eye Res. 72:289–299 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. T. Zetterstrom, L. Vernet, U. Ungerstedt, U. Tossman, B. Jonzon, and B. B. Fredholm. Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci. Lett. 29:111–115 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. S. Mishima, A. Gasset, S. D. Klyce Jr., and J. L. Baum. Determination of tear volume and tear flow. Invest. Ophthalmol. 5:264–276 (1966).

    PubMed  CAS  Google Scholar 

  32. T. Zhang, C. D. Xiang, D. Gale, S. Carreiro, E. Y. Wu, and E. Y. Zhang. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab. Dispos. 36:1300–1307 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. S. Agarwal, D. Pal, and A. K. Mitra. Both P-gp and MRP2 mediate transport of Lopinavir, a protease inhibitor. Int. J. Pharm. 339:139–147 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. D. J. Brayden, and J. Griffin. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers. Vet. Res. Commun. 32:93–106 (2008).

    Article  PubMed  Google Scholar 

  35. S. D. Flanagan, C. L. Cummins, M. Susanto, X. Liu, L. H. Takahashi, and L. Z. Benet. Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 64:126–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. M. Horio, I. Pastan, M. M. Gottesman, and J. S. Handler. Transepithelial transport of vinblastine by kidney-derived cell lines. Application of a new kinetic model to estimate in situ Km of the pump. Biochim. Biophys. Acta. 1027:116–122 (1990).

    Article  PubMed  CAS  Google Scholar 

  37. R. Krishna, and L. D. Mayer. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 11:265–283 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. R. Krishna, and L. D. Mayer. Liposomal doxorubicin circumvents PSC 833-free drug interactions, resulting in effective therapy of multidrug-resistant solid tumors. Cancer Res. 57:5246–5253 (1997).

    PubMed  CAS  Google Scholar 

  39. T. Mizutani, M. Masuda, E. Nakai, K. Furumiya, H. Togawa, Y. Nakamura, Y. Kawai, K. Nakahira, S. Shinkai, and K. Takahashi. Genuine functions of P-glycoprotein (ABCB1). Curr. Drug Metab. 9:167–174 (2008).

    Article  PubMed  CAS  Google Scholar 

  40. Z. S. Chen, Y. Guo, M. G. Belinsky, E. Kotova, and G. D. Kruh. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol. Pharmacol. 67:545–557 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. X. Y. Chu, S. E. Huskey, M. P. Braun, B. Sarkadi, D. C. Evans, and R. Evers. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J. Pharmacol. Exp. Ther. 309:156–164 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. D. W. Loe, K. C. Almquist, S. P. Cole, and R. G. Deeley. ATP-dependent 17 beta-estradiol 17-(beta-D-glucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. J. Biol. Chem. 271:9683–9689 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. N. Zelcer, G. Reid, P. Wielinga, A. Kuil, I. van der Heijden, J. D. Schuetz, and P. Borst. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J. 371:361–367 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. C. R. Yates, C. Chang, J. D. Kearbey, K. Yasuda, E. G. Schuetz, D. D. Miller, J. T. Dalton, and P. W. Swaan. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm. Res. 20:1794–1803 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. B. S. Anand, S. Katragadda, S. Gunda, and A. K. Mitra. In vivo ocular pharmacokinetics of acyclovir dipeptide ester prodrugs by microdialysis in rabbits. Mol. Pharm. 3:431–440 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. S. Gunda, S. Hariharan, and A. K. Mitra. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J. Ocul. Pharmacol Ther. 22:465–476 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. S. Katragadda, S. Gunda, S. Hariharan, and A. K. Mitra. Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber: Evaluation of their utility in treating ocular HSV infections. Int. J. Pharm. 359:15–24 (2008).

    Article  PubMed  CAS  Google Scholar 

  48. P. R. McMaster, and F. J. Macri. The rate of aqueous humor formation in buphthalmic rabbit eyes. Invest. Ophthalmol. 6:84–87 (1967).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01EY09171-14 and R01EY10659-12

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, S., Gunda, S., Mishra, G.P. et al. Enhanced Corneal Absorption of Erythromycin by Modulating P-Glycoprotein and MRP Mediated Efflux with Corticosteroids. Pharm Res 26, 1270–1282 (2009). https://doi.org/10.1007/s11095-008-9741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9741-x

KEY WORDS

Navigation