Skip to main content
Log in

Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

The process of finding new therapeutic indications for currently used drugs, defined as ‘repurposing’, is receiving growing attention. Chloroquine and hydroxychloroquine, with an original indication to prevent or cure malaria, have been successfully used to treat several infectious (HIV, Q fever, Whipple’s disease, fungal infections), rheumatological (systemic lupus erythematosus, antiphospholipid antibody syndrome, rheumatoid arthritis, Sjögren’s syndrome), and other immunological diseases. Indeed, they have anti-inflammatory, immunomodulating, anti-infective, antithrombotic, and metabolic effects. Among the biological effects of chloroquine and hydroxychloroquine, it is important to highlight their antitumoral properties, likely due to their strong antiproliferative, antimutagenic, and inhibiting autophagy capacities. These effects make these drugs a possible option in the treatment of several tumors in association with radiotherapy and chemotherapy. Finally, the repurposing of chloroquine and hydroxychloroquine is currently being examined for neurological diseases such as neurosarcoidosis, chronic lymphocytic inflammation with pontine perivascular enhancement responsive to corticosteroids, and primary progressive multiple sclerosis. Several ongoing clinical trials have been testing these drugs in non-neoplastic and neoplastic diseases. Moreover, the well-demonstrated good tolerability of chloroquine and hydroxychloroquine make them safe even during pregnancy. Gastrointestinal and cutaneous manifestations are considered not to be serious, while retinal, neuromuscular, and cardiac toxicities are classified as serious adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  PubMed  CAS  Google Scholar 

  2. Vesterinen HM, Connick P, Irvine CMJ, Sena ES, Egan KJ, Carmichael GG, et al. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis. PLoS One. 2015;10:e0117705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Al-Bari MAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70:1608–21.

    PubMed  Google Scholar 

  4. Wallace DJ. Antimalarials—the “real” advance in lupus. Lupus. 2001;10:385–7.

    Article  PubMed  CAS  Google Scholar 

  5. Wallace DJ. The history of antimalarials. Lupus. 1996;5(Suppl 1):S2–3.

    PubMed  Google Scholar 

  6. Krafts K, Hempelmann E, Skórska-Stania A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol Res. 2012;111:1–6.

    Article  PubMed  Google Scholar 

  7. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol. 2012;42:145–53.

    Article  PubMed  CAS  Google Scholar 

  8. Smith CD, Cyr M. The history of lupus erythematosus. From Hippocrates to Osler. Rheum Dis Clin North Am. 1988;14:1–14.

    PubMed  CAS  Google Scholar 

  9. Stoughton RB. Treatment of chronic lupus erythematosus with atabrine and chloroquine. Ill Med J. 1955;107:299–302.

    PubMed  CAS  Google Scholar 

  10. Wallace DJ. The use of quinacrine (Atabrine) in rheumatic diseases: a reexamination. Semin Arthritis Rheum. 1989;18:282–96.

    Article  PubMed  CAS  Google Scholar 

  11. Conner SK. Systemic lupus erythematosus; a report on twelve cases treated with quinacrine (atabrine) and chloroquine (aralen). Ann Rheum Dis. 1957;16:76–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Farber EM, Driver IE. Atabrine and chloroquine in the treatment of chronic discoid lupus erythematosus. Stanford Med Bull. 1953;11:157–8.

    PubMed  CAS  Google Scholar 

  13. Tye MJ, White H, Appel B, Ansell HB. Lupus erythematosus treated with a combination of quinacrine, hydroxychloroquine and chloroquine. N Engl J Med. 1959;260:63–6.

    Article  PubMed  CAS  Google Scholar 

  14. Goldman L, Cole DP, Preston RH. Chloroquine diphosphate in treatment of discoid lupus erythematosus. J Am Med Assoc. 1953;152:1428–9.

    Article  PubMed  CAS  Google Scholar 

  15. Rand JH, Wu X-X, Quinn AS, Chen PP, Hathcock JJ, Taatjes DJ. Hydroxychloroquine directly reduces the binding of antiphospholipid antibody-beta2-glycoprotein I complexes to phospholipid bilayers. Blood. 2008;112:1687–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. DrugBank. Chloroquine. http://www.drugbank.ca/drugs/DB00608. Accessed 4 Mar 2016.

  17. DrugBank. Hydroxychloroquine. http://www.drugbank.ca/drugs/DB01611. Accessed 4 Mar 2016.

  18. Kim K-A, Park J-Y, Lee J-S, Lim S. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003;26:631–7.

    Article  PubMed  CAS  Google Scholar 

  19. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, et al. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46:1460–9.

    Article  PubMed  CAS  Google Scholar 

  20. Bernstein HN. Ocular safety of hydroxychloroquine. Ann Ophthalmol. 1991;23:292–6.

    PubMed  CAS  Google Scholar 

  21. Mackenzie AH. Dose refinements in long-term therapy of rheumatoid arthritis with antimalarials. Am J Med. 1983;75:40–5.

    Article  PubMed  CAS  Google Scholar 

  22. Gustafsson LL, Lindström B, Grahnén A, Alván G. Chloroquine excretion following malaria prophylaxis. Br J Clin Pharmacol. 1987;24:221–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chloroquine—FDA prescribing information, side effects and uses. http://www.drugs.com/pro/chloroquine.html. Accessed 14 Apr 2018.

  24. Drugs.com. Hydroxychloroquine uses, dosage and side effects. http://www.drugs.com/hydroxychloroquine.html. Accessed 14 Apr 2018.

  25. McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983;75:11–8.

    Article  PubMed  CAS  Google Scholar 

  26. Durcan L, Clarke WA, Magder LS, Petri M, Hopkins J. Hydroxychloroquine blood levels in systemic lupus erythematosus: clarifying dosing controversies and improving adherence. J Rheum. 2015;42(11):2092–7. https://doi.org/10.3899/jrheum.150379.

    Article  PubMed  CAS  Google Scholar 

  27. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69:20–8.

    Article  PubMed  CAS  Google Scholar 

  28. Sciascia S, Branch DW, Levy RA, Middeldorp S, Pavord S, Roccatello D, et al. The efficacy of hydroxychloroquine in altering pregnancy outcome in women with antiphospholipid antibodies. Evidence and clinical judgment. Thromb Haemost. 2016;115:285–90.

    Article  PubMed  Google Scholar 

  29. Sciascia S, Hunt BJ, Talavera-Garcia E, Lliso G, Khamashta MA, Cuadrado MJ. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am J Obstet Gynecol. 2016;214:273.e18.

    Article  CAS  Google Scholar 

  30. Mekinian A, Lazzaroni MG, Kuzenko A, Alijotas-Reig J, Ruffatti A, Levy P, et al. The efficacy of hydroxychloroquine for obstetrical outcome in anti-phospholipid syndrome: data from a European multicenter retrospective study. Autoimmun Rev. 2015;14:498–502.

    Article  PubMed  CAS  Google Scholar 

  31. Leroux M, Desveaux C, Parcevaux M, Julliac B, Gouyon JB, Dallay D, et al. Impact of hydroxychloroquine on preterm delivery and intrauterine growth restriction in pregnant women with systemic lupus erythematosus: a descriptive cohort study. Lupus. 2015;24:1384–91.

    Article  PubMed  CAS  Google Scholar 

  32. Koh JH, Ko HS, Kwok S-K, Ju JH, Park S-H. Hydroxychloroquine and pregnancy on lupus flares in Korean patients with systemic lupus erythematosus. Lupus. 2015;24:210–7.

    Article  PubMed  CAS  Google Scholar 

  33. Clowse MEB, Magder L, Witter F, Petri M. Hydroxychloroquine in lupus pregnancy. Arthritis Rheum. 2006;54:3640–7.

    Article  PubMed  Google Scholar 

  34. Luo Y, Zhang L, Fei Y, Li Y, Hao D, Liu Y, et al. Pregnancy outcome of 126 anti-SSA/Ro-positive patients during the past 24 years–a retrospective cohort study. Clin Rheumatol. 2015;34:1721–8.

    Article  PubMed  Google Scholar 

  35. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96:729–46.

    Article  PubMed  CAS  Google Scholar 

  36. Yoon YH, Cho KS, Hwang JJ, Lee S-J, Choi JA, Koh J-Y. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci. 2010;51:6030–7.

    Article  PubMed  Google Scholar 

  37. Ziegler HK, Unanue ER. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci USA. 1982;79:175–8.

    Article  PubMed  CAS  Google Scholar 

  38. Costedoat-Chalumeau N, Dunogué B, Morel N, Le Guern V, Guettrot-Imbert G. Hydroxychloroquine: a multifaceted treatment in lupus. Presse Med. 2014;43:e167–80.

    Article  PubMed  Google Scholar 

  39. Landewé RB, Miltenburg AM, Verdonk MJ, Verweij CL, Breedveld FC, Daha MR, et al. Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clin Exp Immunol. 1995;102:144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  40. van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol. 1997;24:55–60.

    PubMed  Google Scholar 

  41. Picot S, Peyron F, Vuillez JP, Polack B, Ambroise-Thomas P. Chloroquine inhibits tumor necrosis factor production by human macrophages in vitro. J Infect Dis. 1991;164:830.

    Article  PubMed  CAS  Google Scholar 

  42. Jang C-H, Choi J-H, Byun M-S, Jue D-M. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). 2006;45:703–10.

    Article  CAS  Google Scholar 

  43. Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, Mayer L. Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha (IL-1-alpha) and IL-6 in human monocytes and T cells. J Rheumatol. 1993;20:803–8.

    PubMed  CAS  Google Scholar 

  44. Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G, Pescarmona G, et al. Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human endothelial cells. J Clin Invest. 1998;102:595–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lafyatis R, York M, Marshak-Rothstein A. Antimalarial agents: closing the gate on toll-like receptors? Arthritis Rheum. 2006;54:3068–70.

    Article  PubMed  CAS  Google Scholar 

  46. Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184:770–6.

    Article  PubMed  CAS  Google Scholar 

  47. Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR Network. Am J Trop Med Hyg. 2015;93:57–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother. 2009;53:3416–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Farias KJS, Machado PRL, Muniz JAPC, Imbeloni AA, da Fonseca BAL. Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys. Viral Immunol. 2015;28:161–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Borges MC, Castro LA, de Fonseca BAL. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz. 2013;108:596–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang L-F, Lin Y-S, Huang N-C, Yu C-Y, Tsai W-L, Chen J-J, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interferon Cytokine Res. 2015;35:143–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003;3:722–7.

    Article  PubMed  CAS  Google Scholar 

  53. Kersh GJ. Antimicrobial therapies for Q fever. Expert Rev Anti Infect Ther. 2013;11:1207–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dey S, Bishayi B. Killing of Staphylococcus aureus in murine macrophages by chloroquine used alone and in combination with ciprofloxacin or azithromycin. J Inflamm Res. 2015;8:29–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Keshavarzi F. Fungistatic effect of hydroxychloroquine, lessons from a case. Med Mycol Case Rep. 2016;13:17–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Levitz SM, Harrison TS, Tabuni A, Liu X. Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J Clin Invest. 1997;100:1640–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Weber SM, Levitz SM, Harrison TS. Chloroquine and the fungal phagosome. Curr Opin Microbiol. 2000;3:349–53.

    Article  PubMed  CAS  Google Scholar 

  58. Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf. 2017;16:411–9.

    Article  PubMed  CAS  Google Scholar 

  59. Belizna C. Hydroxychloroquine as an anti-thrombotic in antiphospholipid syndrome. Autoimmun Rev. 2015;14:358–62.

    Article  PubMed  CAS  Google Scholar 

  60. Broder A, Putterman C. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in systemic lupus erythematosus. J Rheumatol. 2013;40:30–3.

    Article  PubMed  CAS  Google Scholar 

  61. Burgos PI, Alarcón GS. Thrombosis in systemic lupus erythematosus: risk and protection. Expert Rev Cardiovasc Ther. 2009;7:1541–9.

    Article  PubMed  Google Scholar 

  62. Petri M. Use of hydroxychloroquine to prevent thrombosis in systemic lupus erythematosus and in antiphospholipid antibody-positive patients. Curr Rheumatol Rep. 2011;13:77–80.

    Article  PubMed  CAS  Google Scholar 

  63. Szymezak J, Ankri A, Fischer A-M, Darnige L. Hydroxychloroquine: a new therapeutic approach to the thrombotic manifestations of antiphospholipid syndrome. Rev Med Intern. 2010;31:854–7.

    Article  CAS  Google Scholar 

  64. Rand JH, Wu XX, Quinn AS, Ashton AW, Chen PP, Hathcock JJ, et al. Hydroxychloroquine protects the annexinA5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115:2292–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cummins D, Faint R, Yardumian DA, Dawling S, Mackie I, Machin SJ. The in vitro and ex vivo effects of chloroquine sulphate on platelet function: implications for malaria prophylaxis in patients with impaired haemostasis. J Trop Med Hyg. 1990;93:112–5.

    PubMed  CAS  Google Scholar 

  66. Jancinová V, Nosál R, Petríková M. On the inhibitory effect of chloroquine on blood platelet aggregation. Thromb Res. 1994;74:495–504.

    Article  PubMed  Google Scholar 

  67. Cansu DU, Korkmaz C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology (Oxford). 2008;47:378–9.

    Article  CAS  Google Scholar 

  68. Shojania K, Koehler BE, Elliott T. Hypoglycemia induced by hydroxychloroquine in a type II diabetic treated for polyarthritis. J Rheumatol. 1999;26:195–6.

    PubMed  CAS  Google Scholar 

  69. Unübol M, Ayhan M, Guney E. Hypoglycemia induced by hydroxychloroquine in a patient treated for rheumatoid arthritis. J Clin Rheumatol. 2011;17:46–7.

    Article  PubMed  Google Scholar 

  70. Quatraro A, Consoli G, Magno M, Caretta F, Nardozza A, Ceriello A, et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann Intern Med. 1990;112:678–81.

    Article  PubMed  CAS  Google Scholar 

  71. Pareek A, Chandurkar N, Thomas N, Viswanathan V, Deshpande A, Gupta OP, et al. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: a double blind, randomized comparison with pioglitazone. Curr Med Res Opin. 2014;30:1257–66.

    Article  PubMed  CAS  Google Scholar 

  72. Cairoli E, Rebella M, Danese N, Garra V, Borba EF. Hydroxychloroquine reduces low-density lipoprotein cholesterol levels in systemic lupus erythematosus: a longitudinal evaluation of the lipid-lowering effect. Lupus. 2012;21:1178–82.

    Article  PubMed  CAS  Google Scholar 

  73. Hage MP, Al-Badri MR, Azar ST. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther Adv Endocrinol Metab. 2014;5:77–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wallace DJ, Metzger AL, Stecher VJ, Turnbull BA, Kern PA. Cholesterol-lowering effect of hydroxychloroquine in patients with rheumatic disease: reversal of deleterious effects of steroids on lipids. Am J Med. 1990;89:322–6.

    Article  PubMed  CAS  Google Scholar 

  75. Wilhelm AJ, Major AS. Accelerated atherosclerosis in SLE: mechanisms and prevention approaches. Int J Clin Rheumtol. 2012;7:527–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Geser A, Brubaker G, Draper CC. Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am J Epidemiol. 1989;129:740–52.

    Article  PubMed  CAS  Google Scholar 

  77. Marmor MF, Kellner U, Lai TYY, Lyons JS, Mieler WF. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology. 2011;118:415–22.

    Article  PubMed  Google Scholar 

  78. Van Beek MJ, Piette WW. Antimalarials. Dermatol Clin. 2001;19:147–60.

    Article  PubMed  Google Scholar 

  79. Khraishi MM, Singh G. The role of anti-malarials in rheumatoid arthritis–the American experience. Lupus. 1996;5(Suppl 1):S41–4.

    PubMed  CAS  Google Scholar 

  80. Kalia S, Dutz JP. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther. 2007;20:160–74.

    Article  PubMed  Google Scholar 

  81. Tehrani R, Ostrowski RA, Hariman R, Jay WM. Ocular toxicity of hydroxychloroquine. Semin Ophthalmol. 2008;23:201–9.

    Article  PubMed  Google Scholar 

  82. Melles RB, Marmor MF. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 2014;132:1453–60.

    Article  PubMed  Google Scholar 

  83. Michaelides M, Stover NB, Francis PJ, Weleber RG. Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy. Arch Ophthalmol. 2011;129:30–9.

    Article  PubMed  CAS  Google Scholar 

  84. Marmor MF, Melles RB. Disparity between visual fields and optical coherence tomography in hydroxychloroquine retinopathy. Ophthalmology. 2014;121:1257–62.

    Article  PubMed  Google Scholar 

  85. Easterbrook M. Ocular effects and safety of antimalarial agents. Am J Med. 1988;85:23–9.

    Article  PubMed  CAS  Google Scholar 

  86. Lozier JR, Friedlaender MH. Complications of antimalarial therapy. Int Ophthalmol Clin. 1989;29:172–8.

    Article  PubMed  CAS  Google Scholar 

  87. Tonnesmann E, Kandolf R, Lewalter T. Chloroquine cardiomyopathy—a review of the literature. Immunopharmacol Immunotoxicol. 2013;35:434–42.

    Article  PubMed  CAS  Google Scholar 

  88. Yogasundaram H, Putko BN, Tien J, Paterson DI, Cujec B, Ringrose J, et al. Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can J Cardiol. 2014;30:1706–15.

    Article  PubMed  Google Scholar 

  89. Soong TR, Barouch LA, Champion HC, Wigley FM, Halushka MK. New clinical and ultrastructural findings in hydroxychloroquine-induced cardiomyopathy–a report of 2 cases. Hum Pathol. 2007;38:1858–63.

    Article  PubMed  Google Scholar 

  90. Naqvi TZ, Luthringer D, Marchevsky A, Saouf R, Gul K, Buchbinder NA. Chloroquine-induced cardiomyopathy-echocardiographic features. J Am Soc Echocardiogr. 2005;18:383–7.

    Article  PubMed  Google Scholar 

  91. Keating RJ, Bhatia S, Amin S, Williams A, Sinak LJ, Edwards WD. Hydroxychloroquine-induced cardiotoxicity in a 39-year-old woman with systemic lupus erythematosus and systolic dysfunction. J Am Soc Echocardiogr. 2005;18:981.

    Article  PubMed  Google Scholar 

  92. Costedoat-Chalumeau N, Hulot JS, Amoura Z, Delcourt A, Maisonobe T, Dorent R, et al. Cardiomyopathy related to antimalarial therapy with illustrative case report. Cardiology. 2007;107:73–80.

    Article  PubMed  Google Scholar 

  93. Cotroneo J, Sleik KM, Rene Rodriguez E, Klein AL. Hydroxychloroquine-induced restrictive cardiomyopathy. Eur J Echocardiogr. 2007;8:247–51.

    Article  PubMed  Google Scholar 

  94. Cervera A, Espinosa G, Font J, Ingelmo M. Cardiac toxicity secondary to long term treatment with chloroquine. Ann Rheum Dis. 2001;60:301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Stein M, Bell MJ, Ang LC. Hydroxychloroquine neuromyotoxicity. J Rheumatol. 2000;27:2927–31.

    PubMed  CAS  Google Scholar 

  96. Kwon J-B, Kleiner A, Ishida K, Godown J, Ciafaloni E, Looney RJ. Hydroxychloroquine-induced myopathy. J Clin Rheumatol. 2010;16:28–31.

    Article  PubMed  Google Scholar 

  97. Estes ML, Ewing-Wilson D, Chou SM, Mitsumoto H, Hanson M, Shirey E, et al. Chloroquine neuromyotoxicity. Clinical and pathologic perspective. Am J Med. 1987;82:447–55.

    Article  PubMed  CAS  Google Scholar 

  98. Al-Bari M, Alim A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5:1–13.

    Article  CAS  Google Scholar 

  99. Naarding MA, Baan E, Pollakis G, Paxton WA. Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4 + T-lymphocytes. Retrovirology. 2007;4:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jiang MC, Lin JK, Chen SS. Inhibition of HIV-1 Tat-mediated transactivation by quinacrine and chloroquine. Biochem Biophys Res Commun. 1996;4(226):1–7.

    Article  Google Scholar 

  101. Benveniste O, Flahault A, Rollot F, Elbim C, Estaquier J, Pedron B, et al. Mechanisms involved in the low-level regeneration of CD4 + cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J Infect Dis. 2005;191:1670–9.

    Article  PubMed  Google Scholar 

  102. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    Article  PubMed  CAS  Google Scholar 

  103. Funderburg N, Luciano AA, Jiang W, Rodriguez B, Sieg SF, Lederman MM. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One. 2008;3:1–7.

    Article  CAS  Google Scholar 

  104. French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4 + T cells. J Infect Dis. 2009;200:1212–5.

    Article  PubMed  CAS  Google Scholar 

  105. Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri B, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118:3263–72.

    Article  PubMed  CAS  Google Scholar 

  106. van Loosdregt J, Spreafico R, Rossetti M, Prakken BJ, Lotz M, Albani S. Hydroxychloroquine preferentially induces apoptosis of CD45RO + effector T cells by inhibiting autophagy: a possible mechanism for therapeutic modulation of T cells. J Allergy Clin Immunol. 2013;131(1443–1446):e1.

    Google Scholar 

  107. Chomont N, DaFonseca S, Vandergeeten C, Ancuta P, Sékaly R-P. Maintenance of CD4 + T-cell memory and HIV persistence: keeping memory, keeping HIV. Curr Opin HIV AIDS. 2011;6:30–6.

    Article  PubMed  Google Scholar 

  108. Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K. Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther. 1996;18:1080–92.

    Article  PubMed  CAS  Google Scholar 

  109. Savarino A, Gennero L, Sperber K, Boelaert JR. The anti-HIV-1 activity of chloroquine. J Clin Virol. 2001;20:131–5.

    Article  PubMed  CAS  Google Scholar 

  110. Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, et al. Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr. 2004;35:223–32.

    Article  PubMed  CAS  Google Scholar 

  111. Savarino A, Shytaj IL. Chloroquine and beyond: exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology. 2015;12:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sperber K, Louie M, Kraus T, Proner J, Sapira E, Lin S, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther. 1995;17:622–36.

    Article  PubMed  CAS  Google Scholar 

  113. Ross W. Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1. Clin Ther. 1997;19:913–23.

    Article  PubMed  Google Scholar 

  114. Paton NI, Goodall RL, Dunn DT, Franzen S, Collaco-Moraes Y, Gazzard BG, et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA. 2012;308:353–61.

    Article  PubMed  CAS  Google Scholar 

  115. Routy JP, Angel JB, Patel M, Kanagaratham C, Radzioch D, Kema I, et al. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2015;16:48–56.

    Article  PubMed  CAS  Google Scholar 

  116. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30:297–308.

    Article  PubMed  CAS  Google Scholar 

  117. Million M, Raoult D. Recent advances in the study of Q fever epidemiology, diagnosis and management. J Infect. 2015;71:S2–9.

    Article  PubMed  Google Scholar 

  118. Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12:518–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Botelho-Nevers E, Fournier P-E, Richet H, Fenollar F, Lepidi H, Foucault C, et al. Coxiella burnetii infection of aortic aneurysms or vascular grafts: report of 30 new cases and evaluation of outcome. Eur J Clin Microbiol Infect Dis. 2007;26:635–40.

    Article  PubMed  CAS  Google Scholar 

  120. Levy PY, Drancourt M, Etienne J, Auvergnat JC, Beytout J, Sainty JM, et al. Comparison of different antibiotic regimens for therapy of 32 cases of Q fever endocarditis. Antimicrob Agents Chemother. 1991;35:533–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lam C, Mathison GE. Effect of low intraphagolysosomal pH on antimicrobial activity of antibiotics against ingested staphylococci. J Med Microbiol. 1983;16:309–16.

    Article  PubMed  CAS  Google Scholar 

  122. Raoult D, Drancourt M, Vestris G. Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Agents Chemother. 1990;34:1512–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med. 1999;159:167–73.

    Article  PubMed  CAS  Google Scholar 

  124. Lagier J-C, Fenollar F, Lepidi H, Giorgi R, Million M, Raoult D. Treatment of classic Whipple’s disease: from in vitro results to clinical outcome. J Antimicrob Chemother. 2014;69:219–27.

    Article  PubMed  CAS  Google Scholar 

  125. Fenollar F, Lagier J-C, Raoult D. Tropheryma whipplei and Whipple’s disease. J Infect. 2014;69:103–12.

    Article  PubMed  Google Scholar 

  126. Fenollar F, Puéchal X, Raoult D. Whipple’s disease. N Engl J Med. 2007;356:55–66.

    Article  PubMed  CAS  Google Scholar 

  127. Keinath RD, Merrell DE, Vlietstra R, Dobbins WO. Antibiotic treatment and relapse in Whipple’s disease. Long-term follow-up of 88 patients. Gastroenterology. 1985;88:1867–73.

    Article  PubMed  CAS  Google Scholar 

  128. El-Abassi R, Soliman MY, Williams F, England JD. Whipple’s disease. J Neurol Sci. 2017;377:197–206.

    Article  PubMed  Google Scholar 

  129. Garas G, Cheng WS, Abrugiato R, Forbes GM. Clinical relapse in Whipple’s disease despite maintenance therapy. J Gastroenterol Hepatol. 2000;15:1223–6.

    Article  PubMed  CAS  Google Scholar 

  130. Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:982–91.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hoppe HC, van Schalkwyk DA, Wiehart UIM, Meredith SA, Egan J, Weber BW. Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob Agents Chemother. 2004;48:2370–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Byrd TF, Horwitz MA. Chloroquine inhibits the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin Invest. 1991;88:351–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Henriet SS, Jans J, Simonetti E, Kwon-Chung KJ, Rijs AJ, Hermans PW, et al. Chloroquine modulates the fungal immune response in phagocytic cells from patients with chronic granulomatous disease. J Infect Dis. 2013;207:1932–9.

    Article  PubMed  CAS  Google Scholar 

  134. Boelaert JR, Appelberg R, Gomes MS, Blasi E, Mazzolla R, Grosset J, et al. Experimental results on chloroquine and AIDS-related opportunistic infections. J Acquir Immune Defic Syndr. 2001;26:300–1.

    Article  PubMed  CAS  Google Scholar 

  135. Dias-Melicio LA, Moreira AP, Calvi SA, Soares AM. Chloroquine inhibits Paracoccidioides brasiliensis survival within human monocytes by limiting the availability of intracellular iron. Microbiol Immunol. 2006;50:307–14.

    Article  PubMed  CAS  Google Scholar 

  136. Castro LA, Fox SJ, Chen X, Liu K, Bellan SE, Dimitrov NB, et al. Assessing real-time Zika risk in the United States. BMC Infect Dis. 2017;17:284.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Cragan JD, Mai CT, Petersen EE, Liberman RF, Forestieri NE, Stevens AC, et al. Baseline prevalence of birth defects associated with congenital Zika virus infection—Massachusetts, North Carolina, and Atlanta, Georgia, 2013–2014. MMWR Morb Mortal Wkly Rep. 2017;66:219–22.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shiryaev SA, Mesci P, Pinto A, Fernandes I, Sheets N, Shresta S, et al. Repurposing of the anti-malaria drug chloroquine for Zika virus treatment and prophylaxis. Sci Rep. 2017;7(1):15771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis. 2017;17:e107–17.

    Article  PubMed  CAS  Google Scholar 

  140. Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C. Chikungunya virus infection. Curr Infect Dis Rep. 2011;13:218–28.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Martõâ-Carvajal A, Ramon-Pardo P, Javelle E, Simon F, Aldighieri S, Horvath H, et al. Interventions for treating patients with chikungunya virus infection-related rheumatic and musculoskeletal disorders: a systematic review. PLoS One. 2017;12(6):e0179028.

    Article  CAS  Google Scholar 

  142. Ravindran V, Alias G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: a 24-week randomized controlled open label study. Clin Rheumatol. 2017;36:1335–40.

    Article  PubMed  Google Scholar 

  143. Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF, Al-Bari MAA. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23:231–69.

    Article  PubMed  CAS  Google Scholar 

  144. Jessop S, Whitelaw D, Jordaan F. Drugs for discoid lupus erythematosus. Cochrane Database Syst Rev. 2001;1:CD002954.

    Google Scholar 

  145. Jessop S, Whitelaw DA, Delamere FM. Drugs for discoid lupus erythematosus. Cochrane Database Syst Rev. 2009;4:CD002954. https://doi.org/10.1002/14651858.CD002954.pub2.

    Article  Google Scholar 

  146. Jessop S, Whitelaw DA, Grainge MJ, Jayasekera P. Drugs for discoid lupus erythematosus. Cochrane Database Syst Rev. 2017;5:CD002954. https://doi.org/10.1002/14651858.CD002954.pub3.

    Article  PubMed  Google Scholar 

  147. Mok CC, Mak A, Ma KM. Bone mineral density in postmenopausal Chinese patients with systemic lupus erythematosus. Lupus. 2005;14:106–12.

    Article  PubMed  CAS  Google Scholar 

  148. Lakshminarayanan S, Walsh S, Mohanraj M, Rothfield N. Factors associated with low bone mineral density in female patients with systemic lupus erythematosus. J Rheumatol. 2001;28:102–8.

    PubMed  CAS  Google Scholar 

  149. O’Dell JR, Haire C, Erikson N, Drymalski W, Palmer W, Maloley P, et al. Efficacy of triple DMARD therapy in patients with RA with suboptimal response to methotrexate. J Rheumatol Suppl. 1996;44:72–4.

    PubMed  Google Scholar 

  150. O’Dell JR, Mikuls TR, Taylor TH, Ahluwalia V, Brophy M, Warren SR, et al. Therapies for active rheumatoid arthritis after methotrexate failure. N Engl J Med. 2013;369:307–18.

    Article  PubMed  CAS  Google Scholar 

  151. Combe B, Guttierrez M, Anaya JM, Sany J. Possible efficacy of hydroxychloroquine on accelerated nodulosis during methotrexate therapy for rheumatoid arthritis. J Rheumatol. 1993;20:755–6.

    PubMed  CAS  Google Scholar 

  152. Thorne I, Sutcliffe N. Sjögren’s syndrome. Br J Hosp Med. 2017;78:438–42.

    Article  Google Scholar 

  153. Wang S, Zhang L, Wei P, Hua H. Is hydroxychloroquine effective in treating primary Sjogren’s syndrome: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18:186. https://doi.org/10.1186/s12891-017-1543-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Baldini C, Pepe P, Quartuccio L, Priori R, Bartoloni E, Alunno A, et al. Primary Sjogren’s syndrome as a multi-organ disease: impact of the serological profile on the clinical presentation of the disease in a large cohort of Italian patients. Rheumatology (Oxford). 2014;53:839–44.

    Article  Google Scholar 

  155. Oxholm P, Prause JU, Schiødt M. Rational drug therapy recommendations for the treatment of patients with Sjögren’s syndrome. Drugs. 1998;56:345–53.

    Article  PubMed  CAS  Google Scholar 

  156. Clinical Practice Guidelines. https://www.sjogrens.org/home/research-programs/clinical-practice-guidelines. Accessed 14 Apr 2018.

  157. Poh-Fitzpatrick M. Porphyria cutanea tarda: treatment options revisited. Clin Gastroenterol Hepatol. 2012;10:1410–1.

    Article  PubMed  Google Scholar 

  158. Solomon L. Chronic ulcerative stomatitis. Oral Dis. 2008;14:383–9.

    Article  PubMed  CAS  Google Scholar 

  159. Ochsendorf FR. Use of antimalarials in dermatology. J Dtsch Dermatol Ges. 2010;8:829–44. https://doi.org/10.1111/j.1610-0387.2010.07490.x.

    Article  PubMed  Google Scholar 

  160. Tutrone WD, Spann CT, Scheinfeld N, Deleo VA. Polymorphic light eruption. Dermatol Ther. 2003;16:28–39.

    Article  PubMed  Google Scholar 

  161. Pareek A, Khopkar U, Sacchidanand S, Chandurkar N, Naik GS. Comparative study of efficacy and safety of hydroxychloroquine and chloroquine in polymorphic light eruption: a randomized, double-blind, multicentric study. Indian J Dermatol Venereol Leprol. 2008;74:18–22.

    Article  PubMed  Google Scholar 

  162. Bedoya V. Effect of chloroquine on malignant lymphoreticular and pigmented cells in vitro. Cancer Res. 1970;30:1262–75.

    PubMed  CAS  Google Scholar 

  163. Pascolo S. Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol. 2016;771:139–44.

    Article  PubMed  CAS  Google Scholar 

  164. Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, et al. Repurposing drugs in oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 2017;11:1–35.

    Article  Google Scholar 

  165. Shi TT, Yu XX, Yan LJ, Xiao HT. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother Pharmacol. 2017;79:287–94.

    Article  PubMed  CAS  Google Scholar 

  166. Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol. 2014;1:e29911.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  PubMed  CAS  Google Scholar 

  168. Jiang P, Zhao Y, Shi W, Deng X, Xie G, Mao Y, et al. Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol Biochem. 2008;22:431–40.

    Article  PubMed  CAS  Google Scholar 

  169. Jiang P-D, Zhao Y-L, Deng X-Q, Mao Y-Q, Shi W, Tang Q-Q, et al. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother. 2010;64:609–14.

    Article  PubMed  CAS  Google Scholar 

  170. Boya P, Gonzalez-Polo R-A, Poncet D, Andreau K, Vieira HLA, Roumier T, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003;22:3927–36.

    Article  PubMed  CAS  Google Scholar 

  171. Zheng Y, Zhao Y-L, Deng X, Yang S, Mao Y, Li Z, et al. Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest. 2009;27:286–92.

    Article  PubMed  CAS  Google Scholar 

  172. Sternglanz H, Yielding KL, Pruitt KM. Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5′-phosphate and other nucleotides. Mol Pharmacol. 1969;5:376–81.

    PubMed  CAS  Google Scholar 

  173. Krajewski WA. Alterations in the internucleosomal DNA helical twist in chromatin of human erythroleukemia cells in vivo influences the chromatin higher-order folding. FEBS Lett. 1995;361:149–52.

    Article  PubMed  CAS  Google Scholar 

  174. Ratikan JA, Sayre JW, Schaue D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int J Radiat Oncol Biol Phys. 2013;87:761–8.

    Article  PubMed  CAS  Google Scholar 

  175. Patel AV, Stickler DE, Tyor WR. Neurosarcoidosis. Curr Treat Options Neurol. 2007;9:161–8.

    Article  PubMed  Google Scholar 

  176. Sharma OP. Effectiveness of chloroquine and hydroxychloroquine in treating selected patients with sarcoidosis with neurological involvement. Arch Neurol. 1998;55:1248–54.

    Article  PubMed  CAS  Google Scholar 

  177. Pittock SJ, Debruyne J, Krecke KN, Giannini C, van den Ameele J, De Herdt V, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain. 2010;133:2626–34.

    Article  PubMed  Google Scholar 

  178. Tan BL, Agzarian M, Schultz DW. CLIPPERS: induction and maintenance of remission using hydroxychloroquine. Neurol Neuroimmunol Neuroinflammation. 2015;2:e56–7.

    Article  Google Scholar 

  179. Shadfar S, Hwang CJ, Lim M-S, Choi D-Y, Hong JT. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res. 2015;38:2106–19.

    Article  PubMed  CAS  Google Scholar 

  180. Van Gool WA, Weinstein HC, Scheltens PK, Walstra GJ. Effect of hydroxychloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet. 2001;358:455–60.

    Article  PubMed  Google Scholar 

  181. Koch MW, Zabad R, Giuliani F, Hader W, Lewkonia R, Metz L, et al. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. J Neurol Sci. 2015;358:131–7.

    Article  PubMed  CAS  Google Scholar 

  182. Mandoj C, Renna R, Plantone D, Sperduti I, Cigliana G, Conti L, et al. Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci Lett. 2015;606:156–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Plantone.

Ethics declarations

Funding

No source of funding was used in the preparation of this review.

Conflict of interest

Domenico Plantone and Tatiana Koudriavtseva have no conflicts of interest relating to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plantone, D., Koudriavtseva, T. Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. Clin Drug Investig 38, 653–671 (2018). https://doi.org/10.1007/s40261-018-0656-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-018-0656-y

Navigation