Skip to main content
Log in

Analysis of Pharmacokinetic and Pharmacodynamic Parameters in EU- Versus US-Licensed Reference Biological Products: Are In Vivo Bridging Studies Justified for Biosimilar Development?

  • Short Communication
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background

Bridging studies are mandatory in the EU and USA if the reference biological product used in the biosimilar comparability exercise is foreign sourced. However, it has been argued that the duplication of bridging studies may limit biosimilar development.

Objective

The aim of the study was to explore whether it is necessary to conduct pharmacokinetic (PK)/pharmacodynamic (PD) bridging studies for biosimilars. This study examines similarities and differences between EU- and US-licensed reference biological products, based on literature-reported PK and/or PD data.

Methods

We searched PubMed, Drugs@FDA, and European Medicines Agency (EMA) databases to identify biosimilar bridging studies designed to evaluate similarities between EU- and US-licensed reference biological products. PK and/or PD parameters were retrieved; the ratio of the parameter value of the EU-licensed product to that of the US-licensed product and its corresponding 90% confidence intervals (CIs) were calculated. Similarity was declared if the 90% CIs for the ratios of the PK or PD parameters were within the range of 80–125%.

Results

Thirty-one bridging studies were identified for 11 biosimilars, including adalimumab (n = 10), bevacizumab (n = 4), epoetin alfa (n = 1), etanercept (n = 2), filgrastim (n = 1), infliximab (n = 3), insulin glargine (n = 1), insulin lispro (n = 1), PEGfilgrastim (n = 2), rituximab (n = 2), and trastuzumab (n = 4). Most studies showed PK and/or PD similarities between the EU- and US-licensed reference biological products. However, among the 31 studies, only three studies (accounting for two biologics, PEGfilgrastim and adalimumab) showed dissimilarity between the EU and US reference products. Although one bridging study on PEGfilgrastim (Sandoz) indicated dissimilar PKs (maximum observed plasma concentration [Cmax] and area under the concentration–time curve [AUC]) between the reference products, the other study (Mylan) demonstrated similar PK. Moreover, two of ten studies involving adalimumab failed to demonstrate similarities between the reference products. However, for both cases, PK similarities were later confirmed in the follow-up bridging studies with larger sample sizes.

Conclusion

Our analysis reveals that, in most cases, the reference biological products originated from the EU and those from the USA are almost indistinguishable in terms of PK/PD properties. Additional in vivo bridging studies between reference products from different global regions may not be required if similar physicochemical and structural properties are evident in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Yu B. Greater potential cost savings with biosimilar use. Am J Manag Care. 2016;22(5):378.

    PubMed  Google Scholar 

  2. Mulcahy AW, Hlavka JP, Case SR. Biosimilar cost savings in the United States: initial experience and future potential. Rand Health Q. 2018;7(4):3.

    PubMed  PubMed Central  Google Scholar 

  3. Grewal S, Ramsey S, Balu S, Carlson JJ. Cost-savings for biosimilars in the United States: a theoretical framework and budget impact case study application using filgrastim. Expert Rev Pharmacoecon Outcomes Res. 2018;18(4):447–54. https://doi.org/10.1080/14737167.2018.1476142.

    Article  PubMed  Google Scholar 

  4. Kurki P. Potential changes to the FDA approach to biosimilars have a global impact. GaBI J. 2018;7(2):53–8.

    Article  Google Scholar 

  5. EMA. Guideline on similar biological medicinal products. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/10/WC500176768.pdf. Accessed 16 Feb 2019.

  6. FDA. Guidance for industry: scientific considerations in demonstrating biosimilarity to a reference product. 2015. https://www.fda.gov/downloads/drugs/guidances/ucm291128.pdf. Accessed 28 Dec 2017.

  7. International Federation of Pharmaceutical Manufacturers & Associations. The pharmaceutical industry and global health: facts and figures 2017. 2018. https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf. Accessed 16 Feb 2019.

  8. McCamish M, Woollett G. Worldwide experience with biosimilar development. mAbs. 2011;3(2):209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Webster CJ, Woollett GR. A ‘global reference’ comparator for biosimilar development. BioDrugs. 2017;31(4):279–86. https://doi.org/10.1007/s40259-017-0227-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. FDA: Citizen petition by Sarfaraz Niazi and additional postings by the FDA. 2019. https://www.regulations.gov/docket?D=FDA-2018-P-1876. Accessed 16 Feb 2019.

  11. Gwaza L, Gordon J, Potthast H, Welink J, Leufkens H, Stahl M, et al. Influence of point estimates and study power of bioequivalence studies on establishing bioequivalence between generics by adjusted indirect comparisons. Eur J Clin Pharmacol. 2015;71(9):1083–9. https://doi.org/10.1007/s00228-015-1889-9.

    Article  PubMed  Google Scholar 

  12. FDA. Guidance for industry: clinical pharmacology data to support a demonstration of biosimilarity to a reference product. 2016. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM397017.pdf. Accessed 28 Dec 2017.

  13. Kaur P, Chow V, Zhang N, Moxness M, Kaliyaperumal A, Markus R. A randomised, single-blind, single-dose, three-arm, parallel-group study in healthy subjects to demonstrate pharmacokinetic equivalence of ABP 501 and adalimumab. Ann Rheum Dis. 2017;76(3):526–33. https://doi.org/10.1136/annrheumdis-2015-208914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. FDA. Clinical Pharmacology Biopharmaceutics review(s) for Cyltezo. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761058Orig1s000ClinPharmR.pdf. Accessed 16 Feb 2019.

  15. Puri A, Niewiarowski A, Arai Y, Nomura H, Baird M, Dalrymple I, et al. Pharmacokinetics, safety, tolerability and immunogenicity of FKB327, a new biosimilar medicine of adalimumab/Humira, in healthy subjects. Br J Clin Pharmacol. 2017;83(7):1405–15. https://doi.org/10.1111/bcp.13245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hillson J, Mant T, Rosano M, Huntenburg C, Alai-Safar M, Darne S, et al. Pharmacokinetic equivalence, comparable safety, and immunogenicity of an adalimumab biosimilar product (M923) to Humira in healthy subjects. Pharmacol Res Perspect. 2018;6(1):e00380. https://doi.org/10.1002/prp2.380.

    Article  CAS  PubMed Central  Google Scholar 

  17. Hyland E, Mant T, Vlachos P, Attkins N, Ullmann M, Roy S, et al. Comparison of the pharmacokinetics, safety, and immunogenicity of MSB11022, a biosimilar of adalimumab, with Humira® in healthy subjects. Br J Clin Pharmacol. 2016;82(4):983–93. https://doi.org/10.1111/bcp.13039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dillingh MR, Reijers JA, Malone KE, Burggraaf J, Bahrt K, Yamashita L, et al. Clinical evaluation of Humira® biosimilar ONS-3010 in healthy volunteers: focus on pharmacokinetics and pharmacodynamics. Front Immunol. 2016;7:508. https://doi.org/10.3389/fimmu.2016.00508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin D, Lee Y, Kim H, Kornicke T, Fuhr R. A randomized phase I comparative pharmacokinetic study comparing SB5 with reference adalimumab in healthy volunteers. J Clin Pharm Ther. 2017;42(6):672–8. https://doi.org/10.1111/jcpt.12583.

    Article  CAS  PubMed  Google Scholar 

  20. EMA. Assessment report for Hyrimoz. 2018. https://www.ema.europa.eu/documents/assessment-report/hyrimoz-epar-public-assessment-report_en.pdf. Accessed 16 Feb 2019.

  21. von Richter O, Lemke L, Haliduola H, Fuhr R, Koernicke T, Schuck E, et al. GP2017, an adalimumab biosimilar: pharmacokinetic similarity to its reference medicine and pharmacokinetics comparison of different administration methods. Expert Opin Biol Ther. 2019;1:1. https://doi.org/10.1080/14712598.2019.1571580 (Epub 2019 Jan 30).

    Article  CAS  Google Scholar 

  22. Markus R, Chow V, Pan Z, Hanes V. A phase I, randomized, single-dose study evaluating the pharmacokinetic equivalence of biosimilar ABP 215 and bevacizumab in healthy adult men. Cancer Chemother Pharmacol. 2017;80(4):755–63. https://doi.org/10.1007/s00280-017-3416-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hettema W, Wynne C, Lang B, Altendorfer M, Czeloth N, Lohmann R, et al. A randomized, single-blind, phase I trial (INVICTAN-1) assessing the bioequivalence and safety of BI 695502, a bevacizumab biosimilar candidate, in healthy subjects. Expert Opin Investig Drugs. 2017;26(8):889–96. https://doi.org/10.1080/13543784.2017.1347635.

    Article  CAS  PubMed  Google Scholar 

  24. Wynne C, Schwabe C, Batra SS, Lopez-Lazaro L, Kankanwadi S. A comparative pharmacokinetic study of DRL_BZ, a candidate biosimilar of bevacizumab, with Avastin® (EU and US) in healthy male subjects. Br J Clin Pharmacol. 2018;84(10):2352–64. https://doi.org/10.1111/bcp.13691.

    Article  CAS  PubMed  Google Scholar 

  25. Knight B, Rassam D, Liao S, Ewesuedo R. A phase I pharmacokinetics study comparing PF-06439535 (a potential biosimilar) with bevacizumab in healthy male volunteers. Cancer Chemother Pharmacol. 2016;77(4):839–46. https://doi.org/10.1007/s00280-016-3001-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lissy M, Ode M, Roth K. Comparison of the pharmacokinetic and pharmacodynamic profiles of one US-marketed and two European-marketed epoetin alfas: a randomized prospective study. Drugs R D. 2011;11(1):61–75. https://doi.org/10.2165/11588270-000000000-00000.

    Article  PubMed  Google Scholar 

  27. FDA. Clinical Pharmacology Biopharmaceutics review(s) for Erelzi. 2016. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761042Orig1s000ClinPharmR.pdf. Accessed 16 Feb 2019.

  28. Lee YJ, Shin D, Kim Y, Kang J, Gauliard A, Fuhr R. A randomized phase l pharmacokinetic study comparing SB4 and etanercept reference product (Enbrel(R)) in healthy subjects. Br J Clin Pharmacol. 2016;82(1):64–73. https://doi.org/10.1111/bcp.12929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. FDA. Clinical Pharmacology Biopharmaceutics review(s) for Zarxio. 2015. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125553Orig1s000ClinPharmR.pdf. Accessed 16 Feb 2019.

  30. Park W, Lee SJ, Yun J, Yoo DH. Comparison of the pharmacokinetics and safety of three formulations of infliximab (CT-P13, EU-approved reference infliximab and the US-licensed reference infliximab) in healthy subjects: a randomized, double-blind, three-arm, parallel-group, single-dose, phase I study. Expert Rev Clin Immunol. 2015;11(Suppl 1):S25–31. https://doi.org/10.1586/1744666x.2015.1090311.

    Article  PubMed  Google Scholar 

  31. Shin D, Kim Y, Kim YS, Kornicke T, Fuhr R. A randomized, phase I pharmacokinetic study comparing SB2 and infliximab reference product (Remicade®) in healthy subjects. BioDrugs. 2015;29(6):381–8. https://doi.org/10.1007/s40259-015-0150-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palaparthy R, Udata C, Hua SY, Yin D, Cai CH, Salts S, et al. A randomized study comparing the pharmacokinetics of the potential biosimilar PF-06438179/GP1111 with Remicade(R) (infliximab) in healthy subjects (REFLECTIONS B537-01). Expert Rev Clin Immunol. 2018;14(4):329–36. https://doi.org/10.1080/1744666X.2018.1446829.

    Article  CAS  PubMed  Google Scholar 

  33. Crutchlow MF, Palcza JS, Mostoller KM, Mahon CD, Barbour AM, Marcos MC, et al. Single-dose euglycaemic clamp studies demonstrating pharmacokinetic and pharmacodynamic similarity between MK-1293 insulin glargine and originator insulin glargine (Lantus) in subjects with type 1 diabetes and healthy subjects. Diabetes Obes Metab. 2018;20(2):400–8. https://doi.org/10.1111/dom.13084.

    Article  CAS  PubMed  Google Scholar 

  34. Kapitza C, Nowotny I, Lehmann A, Bergmann K, Rotthaeuser B, Nosek L, et al. Similar pharmacokinetics and pharmacodynamics of rapid-acting insulin lispro products SAR342434 and US- and EU-approved Humalog in subjects with type 1 diabetes. Diabetes Obes Metab. 2017;19(5):622–7. https://doi.org/10.1111/dom.12856.

    Article  CAS  PubMed  Google Scholar 

  35. EMA. Assessment report for Zioxtenzo. 2016. https://www.ema.europa.eu/documents/withdrawal-report/withdrawal-assessment-report-zioxtenzo_en.pdf. Accessed 16 Feb 2019.

  36. EMA. Assessment report for Fulphila. 2016. https://www.ema.europa.eu/documents/withdrawal-report/withdrawal-assessment-report-fulphila_en.pdf. Accessed 16 Feb 2019.

  37. Smolen JS, Cohen SB, Tony HP, Scheinberg M, Kivitz A, Balanescu A, et al. A randomised, double-blind trial to demonstrate bioequivalence of GP2013 and reference rituximab combined with methotrexate in patients with active rheumatoid arthritis. Ann Rheum Dis. 2017;76(9):1598–602. https://doi.org/10.1136/annrheumdis-2017-211281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cohen S, Emery P, Greenwald M, Yin D, Becker JC, Melia LA, et al. A phase I pharmacokinetics trial comparing PF-05280586 (a potential biosimilar) and rituximab in patients with active rheumatoid arthritis. Br J Clin Pharmacol. 2016;82(1):129–38. https://doi.org/10.1111/bcp.12916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Waller CF, Vutikullird A, Lawrence TE, Shaw A, Liu MS, Baczkowski M, et al. A pharmacokinetics phase 1 bioequivalence study of the trastuzumab biosimilar MYL-1401O vs. EU-trastuzumab and US-trastuzumab. Br J Clin Pharmacol. 2018;84(10):2336–43. https://doi.org/10.1111/bcp.13689.

    Article  CAS  PubMed  Google Scholar 

  40. Hanes V, Chow V, Zhang N, Markus R. A randomized, single-blind, single-dose study evaluating the pharmacokinetic equivalence of proposed biosimilar ABP 980 and trastuzumab in healthy male subjects. Cancer Chemother Pharmacol. 2017;79(5):881–8. https://doi.org/10.1007/s00280-017-3286-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin D, Barker KB, Li R, Meng X, Reich SD, Ricart AD, et al. A randomized phase 1 pharmacokinetic trial comparing the potential biosimilar PF-05280014 with trastuzumab in healthy volunteers (REFLECTIONS B327-01). Br J Clin Pharmacol. 2014;78(6):1281–90. https://doi.org/10.1111/bcp.12464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pivot X, Curtit E, Lee YJ, Golor G, Gauliard A, Shin D, et al. A randomized phase I pharmacokinetic study comparing biosimilar candidate SB3 and trastuzumab in healthy male subjects. Clin Ther. 2016;38(7):1665–73. https://doi.org/10.1016/j.clinthera.2016.06.002.

    Article  CAS  PubMed  Google Scholar 

  43. Frapaise FX. The end of phase 3 clinical trials in biosimilars development? BioDrugs. 2018;32(4):319–24. https://doi.org/10.1007/s40259-018-0287-0.

    Article  CAS  PubMed  Google Scholar 

  44. EMA. Draft guideline on similar biological medicinal products containing recombinant granulocyte-colony stimulating factor (rG-CSF)-Revision 1. 2018. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-similar-biological-medicinal-products-containing-recombinant-granulocyte-colony_en.pdf. Accessed 30 Mar 2018.

  45. Yang BB, Morrow PK, Wu X, Moxness M, Padhi D. Comparison of pharmacokinetics and safety of pegfilgrastim administered by two delivery methods: on-body injector and manual injection with a prefilled syringe. Cancer Chemother Pharmacol. 2015;75(6):1199–206. https://doi.org/10.1007/s00280-015-2731-x.

    Article  CAS  PubMed  Google Scholar 

  46. ICH Harmonised Tripartite Quality Guideline 5E (Q5E)—comparability of biotechnological/biological products subject to changes in their manufacturing process. 2004. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5E/Step4/Q5E_Guideline.pdf. Accessed 16 Feb 2019.

  47. Lamanna WC, Holzmann J, Cohen HP, Guo X, Schweigler M, Stangler T, et al. Maintaining consistent quality and clinical performance of biopharmaceuticals. Expert Opin Biol Ther. 2018;18(4):369–79. https://doi.org/10.1080/14712598.2018.1421169.

    Article  CAS  PubMed  Google Scholar 

  48. Kim S, Song J, Park S, et al. Drifts in ADCC-related quality attributes of Herceptin: impact on development of a trastuzumab biosimilar. MAbs. 2017;9:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

L-FH wrote the manuscript and designed the research; C-LT, Y-LW, and T-MH analyzed the data.

Corresponding author

Correspondence to Li-Feng Hsu.

Ethics declarations

Funding

No funding was received for this article.

Conflict of interest

Chien-Lung Tu, Yi-Lin Wang, Teh-Min Hu, and Li-Feng Hsu declare that they have no conflicts of interest.

Disclaimer

The views expressed in this article are the author’s personal opinions and not necessarily recommendations of the Taiwan Center for Drug Evaluation (CDE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, CL., Wang, YL., Hu, TM. et al. Analysis of Pharmacokinetic and Pharmacodynamic Parameters in EU- Versus US-Licensed Reference Biological Products: Are In Vivo Bridging Studies Justified for Biosimilar Development?. BioDrugs 33, 437–446 (2019). https://doi.org/10.1007/s40259-019-00357-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-019-00357-2

Navigation