Skip to main content

Advertisement

Log in

A New Strategy for Treatment of Liver Fibrosis

Letting MicroRNAs Do the Job

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short, endogenous, noncoding RNA molecules that regulate gene expression at a post-translational level. MiRNAs have been recognized in the regulation of physiological conditions. Moreover, awareness of the association between dysregulated miRNAs and human diseases is increasing, which consequently brings miRNAs to the frontline in the development of novel therapeutic strategies. We review the latest advances in our knowledge of the involvement of miRNAs in fibrosis with particular emphasis on hepatic fibrosis and the possibilities in the near future for miRNA-based therapy for targeted treatment of liver fibrosis. With recent advances in our understanding of the important role of senescence in the resolution of activated hepatic stellate cells (HSCs), we suggested the therapeutic potential of inducing activated HSCs into senescence by an miRNA-based strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jansen PL. Non-alcoholic steatohepatitis. Eur J Gastroenterol Hepatol. 2004;16(11):1079–85.

    Article  PubMed  Google Scholar 

  2. Povero D, Busletta C, Novo E, et al. Liver fibrosis: a dynamic and potentially reversible process. Histol Histopathol. 2010;25(8):1075–91.

    PubMed  Google Scholar 

  3. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet. 2008;371(9615):838–51.

    Article  PubMed  CAS  Google Scholar 

  4. Garcia-Tsao G, Friedman S, Iredale J, et al. Now there are many (stages) where before there was one: in search of a pathophysiological classification of cirrhosis. Hepatology. 2010;51(4):1445–9.

    Article  PubMed  Google Scholar 

  5. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134(6):1655–69.

    Article  PubMed  CAS  Google Scholar 

  6. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25(2):195–206.

    Article  PubMed  CAS  Google Scholar 

  7. Said A, Lucey MR. Liver transplantation: an update 2008. Curr Opin Gastroenterol. 2008;24(3):339–45.

    Article  PubMed  Google Scholar 

  8. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  PubMed  CAS  Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  10. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  11. Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63.

    Article  PubMed  CAS  Google Scholar 

  12. Triboulet R, Gregory RI. Autoregulatory mechanisms controlling the microprocessor. Adv Exp Med Biol. 2011;700:56–66.

    Article  Google Scholar 

  13. Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002;109(2):145–8.

    Article  PubMed  CAS  Google Scholar 

  14. O’Hara SP, Mott JL, Splinter PL, et al. MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology. 2009;136(1):17–25.

    Article  PubMed  Google Scholar 

  15. Kerr TA, Davidson NO. Therapeutic RNA manipulation in liver disease. Hepatology. 2010;51(3):1055–61.

    Article  PubMed  CAS  Google Scholar 

  16. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71.

    Article  PubMed  CAS  Google Scholar 

  17. Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem. 2006;99(3):671–8.

    Article  PubMed  CAS  Google Scholar 

  18. Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309(5740):1577–81.

    Article  PubMed  CAS  Google Scholar 

  19. Esau C, Davis S, Murray SF, et al. Mir-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.

    Article  PubMed  CAS  Google Scholar 

  20. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘Antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  Google Scholar 

  21. Jiang X, Tsitsiou E, Herrick SE, et al. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277(9):2015–21.

    Article  PubMed  CAS  Google Scholar 

  22. van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105(35):13027–32.

    Article  PubMed  Google Scholar 

  23. Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.

    Article  PubMed  CAS  Google Scholar 

  24. Maurer B, Stanczyk J, Jungel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.

    Article  PubMed  CAS  Google Scholar 

  25. Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–94.

    Article  PubMed  CAS  Google Scholar 

  26. Pan X, Wang ZX, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2011;10(12):1224–32.

    Google Scholar 

  27. Cai B, Pan Z, Lu Y. The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem. 2010;17(5):407–11.

    Article  PubMed  CAS  Google Scholar 

  28. Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37(Pt 4):918–25.

    Article  PubMed  CAS  Google Scholar 

  29. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med (Berl). 2004;82(3):175–81.

    Article  Google Scholar 

  30. Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010;285(46):35293–302.

    Article  PubMed  CAS  Google Scholar 

  31. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article  PubMed  CAS  Google Scholar 

  32. Dudley DT, Pang L, Decker SJ, et al. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA. 1995;92(17):7686–9.

    Article  PubMed  CAS  Google Scholar 

  33. Pages G, Lenormand P, L’Allemain G, et al. Mitogen-activated protein kinases P42mapk and P44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA. 1993;90(18):8319–23.

    Article  PubMed  CAS  Google Scholar 

  34. Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.

    Article  PubMed  CAS  Google Scholar 

  35. Girard M, Jacquemin E, Munnich A, et al. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol. 2008;48(4):648–56.

    Article  PubMed  CAS  Google Scholar 

  36. Filipowicz W, Grosshans H. The liver-specific microRNA miR-122: biology and therapeutic potential. Prog Drug Res. 2011;67:221–38.

    PubMed  CAS  Google Scholar 

  37. Li WQ, Chen C, Xu MD, et al. The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J. 2011;278(9):1522–32.

    Article  PubMed  CAS  Google Scholar 

  38. Senoo H, Yoshikawa K, Morii M, et al. Hepatic stellate cell (vitamin A-storing cell) and its relative: past, present and future. Cell Biol Int. 2010;34(12):1247–72.

    Article  PubMed  CAS  Google Scholar 

  39. Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol. 2009;41(8–9):1639–42.

    Article  PubMed  CAS  Google Scholar 

  40. Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev. 2009;61(7–8):497–512.

    Article  PubMed  CAS  Google Scholar 

  41. Ghiassi-Nejad Z, Friedman SL. Advances in antifibrotic therapy. Expert Rev Gastroenterol Hepatol. 2008;2(6):803–16.

    Article  PubMed  Google Scholar 

  42. Dooley S, ten Dijke P. TGF-beta in progression of liver disease. Cell Tissue Res. 2012;347(1):245–56.

    Article  PubMed  CAS  Google Scholar 

  43. Jiao J, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol. 2009;25(3):223–9.

    Article  PubMed  Google Scholar 

  44. Uyama N, Iimuro Y, Kawada N, et al. Fascin, a novel marker of human hepatic stellate cells, may regulate their proliferation, migration, and collagen gene expression through the FAK–PI3K–Akt pathway. Lab Invest. 2012;92(1):57–71.

    Article  PubMed  CAS  Google Scholar 

  45. Patsenker E, Stickel F. Role of integrins in fibrosing liver diseases. Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G425–34.

    Article  PubMed  CAS  Google Scholar 

  46. Thoen LF, Guimaraes EL, van Grunsven LA. Autophagy: a new player in hepatic stellate cell activation. Autophagy. 2012;8(1):126–8.

    Article  PubMed  CAS  Google Scholar 

  47. Gawrieh S, Papouchado BG, Burgart LJ, et al. Early hepatic stellate cell activation predicts severe hepatitis C recurrence after liver transplantation. Liver Transpl. 2005;11(10):1207–13.

    Article  PubMed  Google Scholar 

  48. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis. 2005;10(5):927–39.

    Article  PubMed  CAS  Google Scholar 

  49. Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci (Lond). 2007;112(5):265–80.

    Article  CAS  Google Scholar 

  50. Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol. 2006;21(Suppl 3):S84–7.

    Article  PubMed  CAS  Google Scholar 

  51. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–67.

    Article  PubMed  CAS  Google Scholar 

  52. Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178(8):5288–95.

    PubMed  CAS  Google Scholar 

  53. Maubach G, Lim MC, Chen J, et al. Mirna studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol. 2011;17(22):2748–73.

    PubMed  CAS  Google Scholar 

  54. Guo CJ, Pan Q, Li DG, et al. Mir-15b and Mir-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol. 2009;50(4):766–78.

    Article  PubMed  CAS  Google Scholar 

  55. Ji J, Zhang J, Huang G, et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009;583(4):759–66.

    Article  PubMed  CAS  Google Scholar 

  56. Chen C, Wu CQ, Zhang ZQ, et al. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res. 2011;317(12):1714–25.

    Article  PubMed  CAS  Google Scholar 

  57. Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology. 2012;56(1):300–10.

    Article  PubMed  CAS  Google Scholar 

  58. Venugopal SK, Jiang J, Kim TH, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol. 2010;298(1):G101–6.

    Article  PubMed  CAS  Google Scholar 

  59. Li J, Zhang Y, Kuruba R, et al. Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cells. Mol Pharmacol. 2011;80(1):191–200.

    Article  PubMed  CAS  Google Scholar 

  60. Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One. 2011;6(1):e16081.

    Article  PubMed  CAS  Google Scholar 

  61. Sekiya Y, Ogawa T, Iizuka M, et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-beta-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol. 2011;226(10):2535–42.

    Article  PubMed  CAS  Google Scholar 

  62. Davalos AR, Coppe JP, Campisi J, et al. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29(2):273–83.

    Article  PubMed  Google Scholar 

  63. Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology. 2004;5(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  64. Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104(39):15472–7.

    Article  PubMed  CAS  Google Scholar 

  65. Marasa BS, Srikantan S, Martindale JL, et al. MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY). 2010;2(6):333–43.

    CAS  Google Scholar 

  66. Schnabl B, Purbeck CA, Choi YH, et al. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology. 2003;37(3):653–64.

    Article  PubMed  CAS  Google Scholar 

  67. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the P53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    Article  PubMed  CAS  Google Scholar 

  68. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22.

    Article  PubMed  CAS  Google Scholar 

  69. Coppe JP, Rodier F, Patil CK, et al. Tumor suppressor and aging biomarker P16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 2011;286(42):36396–403.

    Article  PubMed  CAS  Google Scholar 

  70. Beljaars L, Meijer DK, Poelstra K. Targeting hepatic stellate cells for cell-specific treatment of liver fibrosis. Front Biosci. 2002;1(7):e214–22.

    Article  Google Scholar 

  71. Wang V, Wu W. MicroRNA-based therapeutics for cancer. Biodrugs. 2009;23(1):15–23.

    Article  PubMed  Google Scholar 

  72. Chang Y, Jiang HJ, Sun XM, et al. Hepatic stellate cell-specific gene silencing induced by an artificial microRNA for antifibrosis in vitro. Dig Dis Sci. 2010;55(3):642–53.

    Article  PubMed  CAS  Google Scholar 

  73. Russo FP, Alison MR, Bigger BW, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology. 2006;130(6):1807–21.

    Article  PubMed  Google Scholar 

  74. Maubach G, Lim MC, Zhang CY, et al. GFAP promoter directs lacZ expression specifically in a rat hepatic stellate cell line. World J Gastroenterol. 2006;12(5):723–30.

    PubMed  CAS  Google Scholar 

  75. Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-beta1 to treat liver fibrosis. Pharm Res. 2011;28(4):752–61.

    Article  PubMed  CAS  Google Scholar 

  76. Herrmann J, Arias M, Van De Leur E, et al. CSRP2, TIMP-1, and SM22alpha promoter fragments direct hepatic stellate cell-specific transgene expression in vitro, but not in vivo. Liver Int. 2004;24(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  77. Inagaki Y, Kushida M, Higashi K, et al. Cell type-specific intervention of transforming growth factor beta/SMAD signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology. 2005;129(1):259–68.

    Article  PubMed  CAS  Google Scholar 

  78. Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin a-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26(4):431–42.

    Article  PubMed  CAS  Google Scholar 

  79. Greupink R, Bakker HI, Bouma W, et al. The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo. J Pharmacol Exp Ther. 2006;317(2):514–21.

    Article  PubMed  CAS  Google Scholar 

  80. Gonzalo T, Beljaars L, van de Bovenkamp M, et al. Local inhibition of liver fibrosis by specific delivery of a platelet-derived growth factor kinase inhibitor to hepatic stellate cells. J Pharmacol Exp Ther. 2007;321(3):856–65.

    Article  PubMed  CAS  Google Scholar 

  81. Bansal R, Prakash J, Post E, et al. Novel engineered targeted interferon-gamma blocks hepatic fibrogenesis in mice. Hepatology. 2011;54(2):586–96.

    Article  PubMed  CAS  Google Scholar 

  82. Mann J, Chu DC, Maxwell A, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–14, 14 e1–4.

    Google Scholar 

Download references

Acknowledgments

We kindly thank Dr. Cathapermal Davin and Dr. Abhishek Abilack for revising the paper. No sources of funding were used to prepare this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SL., Zheng, MH., Shi, KQ. et al. A New Strategy for Treatment of Liver Fibrosis. BioDrugs 27, 25–34 (2013). https://doi.org/10.1007/s40259-012-0005-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-012-0005-2

Keywords

Navigation