Skip to main content

Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery in the Treatment of Liver Fibrosis

  • Chapter
  • First Online:
Biotechnologies for Gene Therapy
  • 727 Accesses

Abstract

Chronic liver disease is a global health problem owing to its high morbidity and the limited available treatment options. Liver fibrosis, the most common feature of chronic liver disease, is characterized by excessive accumulation of extracellular matrix (ECM) in the liver, eventually leading to cirrhosis. Hepatic stellate cells (HSCs), the major contributors to hepatic fibrosis, undergo transdifferentiation from a quiescent to an activated/myofibroblastic state, resulting in the accumulation of ECM. MicroRNAs (miRNAs) are small noncoding RNAs that are involved in the regulation of gene expression at the post-transcriptional level. Because miRNAs mediate a broad range of biological functions, dysregulation of miRNAs is strongly associated with various diseases, including liver fibrosis. Therefore, modulation of miRNAs by supplementing or inhibiting them represents a novel therapeutic strategy for liver fibrosis. With recent advances in our understanding of nanomedicines, nanoparticles are regarded as promising candidates for efficient delivery methods for miRNAs because of their biological and technical advantages. In this chapter, we review the pathogenesis of liver fibrosis, the roles of miRNAs in liver fibrosis, the therapeutic potential of miRNAs and their nanoparticle-based delivery for liver fibrosis, and the development of novel miRNA-based therapeutics for liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyer, T. D., & Lindor, K. D. (2016). Zakim and Boyer’s hepatology: A textbook of liver disease e-book. Elsevier Health Sciences.

    Google Scholar 

  2. Higgins, G. (1931). Experimental pathology of the liver. Archives of Pathology, 12, 186–202.

    Google Scholar 

  3. Michalopoulos, G. K., & DeFrances, M. C. (1997). Liver regeneration. Science, 276(5309), 60–66.

    Article  CAS  PubMed  Google Scholar 

  4. Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. The Journal of Clinical Investigation, 115(2), 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuppan, D., & Afdhal, N. H. (2008). Liver cirrhosis. Lancet, 371(9615), 838–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Friedman, S. L. (2008a). Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 88(1), 125–172.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman, S. L. (2008b). Mechanisms of hepatic fibrogenesis. Gastroenterology, 134(6), 1655–1669.

    Article  CAS  PubMed  Google Scholar 

  8. Bosetti, C., Levi, F., Lucchini, F., Zatonski, W. A., Negri, E., & La Vecchia, C. (2007). Worldwide mortality from cirrhosis: An update to 2002. Journal of Hepatology, 46(5), 827–839.

    Article  PubMed  Google Scholar 

  9. Moon, A. M., Singal, A. G., & Tapper, E. B. (2020). Contemporary epidemiology of chronic liver disease and cirrhosis. Clinical Gastroenterology and Hepatology, 18(12), 2650–2666.

    Article  PubMed  Google Scholar 

  10. Tsuchida, T., & Friedman, S. L. (2017). Mechanisms of hepatic stellate cell activation. Nature Reviews. Gastroenterology & Hepatology, 14(7), 397–411.

    Article  CAS  Google Scholar 

  11. Trautwein, C., Friedman, S. L., Schuppan, D., & Pinzani, M. (2015). Hepatic fibrosis: Concept to treatment. Journal of Hepatology, 62(1 Suppl), S15–S24.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, V. N. (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6(5), 376–385.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    Article  CAS  PubMed  Google Scholar 

  14. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H. M., Nguyen, D. T., & Lu, L. F. (2014). Progress and challenge of microRNA research in immunity. Frontiers in Genetics, 5, 178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222.

    Article  CAS  PubMed  Google Scholar 

  18. Shenoy, A., & Blelloch, R. H. (2014). Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nature Reviews. Molecular Cell Biology, 15(9), 565–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murakami, Y., & Kawada, N. (2017). MicroRNAs in hepatic pathophysiology. Hepatology Research, 47(1), 60–69.

    Article  CAS  PubMed  Google Scholar 

  20. Szabo, G., & Bala, S. (2013). MicroRNAs in liver disease. Nature Reviews. Gastroenterology & Hepatology, 10(9), 542–552.

    Article  CAS  Google Scholar 

  21. Wang, X. W., Heegaard, N. H., & Orum, H. (2012). MicroRNAs in liver disease. Gastroenterology, 142(7), 1431–1443.

    Article  CAS  PubMed  Google Scholar 

  22. Mahgoub, A., & Steer, C. J. (2016). MicroRNAs in the evaluation and potential treatment of liver diseases. Journal of Clinical Medicine, 5(5), 52.

    Article  PubMed Central  CAS  Google Scholar 

  23. Yu, B., Zhao, X., Lee, L. J., & Lee, R. J. (2009). Targeted delivery systems for oligonucleotide therapeutics. The AAPS Journal, 11(1), 195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giannitrapani, L., Soresi, M., Bondì, M. L., Montalto, G., & Cervello, M. (2014). Nanotechnology applications for the therapy of liver fibrosis. World Journal of Gastroenterology, 20(23), 7242–7251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Poilil Surendran, S., George Thomas, R., Moon, M. J., & Jeong, Y. Y. (2017). Nanoparticles for the treatment of liver fibrosis. International Journal of Nanomedicine, 12, 6997–7006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ditto, A. J., Shah, P. N., Gump, L. R., & Yun, Y. H. (2009a). Nanospheres formulated from L-tyrosine polyphosphate exhibiting sustained release of polyplexes and in vitro controlled transfection properties. Molecular Pharmaceutics, 6(3), 986–995.

    Article  CAS  PubMed  Google Scholar 

  27. Ditto, A. J., Shah, P. N., & Yun, Y. H. (2009b). Non-viral gene delivery using nanoparticles. Expert Opinion on Drug Delivery, 6(11), 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  28. Shah, P. N., & Yun, Y. H. (2013). Cellular interactions with biodegradable polyurethanes formulated from L-tyrosine. Journal of Biomaterials Applications, 27(8), 1017–1031.

    Article  PubMed  Google Scholar 

  29. Muthiah, M., Park, I. K., & Cho, C. S. (2013). Nanoparticle-mediated delivery of therapeutic genes: Focus on miRNA therapeutics. Expert Opinion on Drug Delivery, 10(9), 1259–1273.

    Article  CAS  PubMed  Google Scholar 

  30. Choi, S. S., Omenetti, A., Witek, R. P., Moylan, C. A., Syn, W. K., Jung, Y., Yang, L., Sudan, D. L., Sicklick, J. K., Michelotti, G. A., Rojkind, M., & Diehl, A. M. (2009). Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 297(6), G1093–G1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwaisako, K., Brenner, D. A., & Kisseleva, T. (2012). What’s new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol, 27 Suppl 2(Suppl 2), 65–68.

    Article  PubMed  CAS  Google Scholar 

  32. Mederacke, I., Hsu, C. C., Troeger, J. S., Huebener, P., Mu, X., Dapito, D. H., Pradere, J. P., & Schwabe, R. F. (2013). Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature Communications, 4, 2823.

    Article  PubMed  CAS  Google Scholar 

  33. Omenetti, A., Choi, S., Michelotti, G., & Diehl, A. M. (2011). Hedgehog signaling in the liver. Journal of Hepatology, 54(2), 366–373.

    Article  CAS  PubMed  Google Scholar 

  34. Engel, M. E., McDonnell, M. A., Law, B. K., & Moses, H. L. (1999). Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. The Journal of Biological Chemistry, 274(52), 37413–37420.

    Article  CAS  PubMed  Google Scholar 

  35. Hanafusa, H., Ninomiya-Tsuji, J., Masuyama, N., Nishita, M., Fujisawa, J., Shibuya, H., Matsumoto, K., & Nishida, E. (1999). Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. The Journal of Biological Chemistry, 274(38), 27161–27167.

    Article  CAS  PubMed  Google Scholar 

  36. Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R., & Brenner, D. A. (1999). The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. Journal of Hepatology, 30(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

  37. Reif, S., Lang, A., Lindquist, J. N., Yata, Y., Gabele, E., Scanga, A., Brenner, D. A., & Rippe, R. A. (2003). The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. The Journal of Biological Chemistry, 278(10), 8083–8090.

    Article  CAS  PubMed  Google Scholar 

  38. Michelotti, G. A., Xie, G., Swiderska, M., Choi, S. S., Karaca, G., Krüger, L., Premont, R., Yang, L., Syn, W. K., Metzger, D., & Diehl, A. M. (2013). Smoothened is a master regulator of adult liver repair. The Journal of Clinical Investigation, 123(6), 2380–2394.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kendall, T. J., Hennedige, S., Aucott, R. L., Hartland, S. N., Vernon, M. A., Benyon, R. C., & Iredale, J. P. (2009). p75 Neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology, 49(3), 901–910.

    Article  CAS  PubMed  Google Scholar 

  40. Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., & Lowe, S. W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell, 134(4), 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oh, Y., Park, O., Swierczewska, M., Hamilton, J. P., Park, J. S., Kim, T. H., et al. (2016). Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology, 64(1), 209–223.

    Article  CAS  PubMed  Google Scholar 

  42. Bartel, D. P. (2018). Metazoan microRNAs. Cell, 173(1), 20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gamazon, E. R., Innocenti, F., Wei, R., Wang, L., Zhang, M., Mirkov, S., Ramírez, J., Huang, R. S., Cox, N. J., Ratain, M. J., & Liu, W. (2013). A genome-wide integrative study of microRNAs in human liver. BMC Genomics, 14, 395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang, J., Guo, J. T., Jiang, D., Guo, H., Taylor, J. M., & Block, T. M. (2008). Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. Journal of Virology, 82(16), 8215–8223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M. A., Xu, C., Mason, W. S., Moloshok, T., Bort, R., Zaret, K. S., & Taylor, J. M. (2004). miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology, 1(2), 106–113.

    Article  CAS  PubMed  Google Scholar 

  46. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.

    Article  CAS  PubMed  Google Scholar 

  47. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., & Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309(5740), 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai, W. C., Hsu, S. D., Hsu, C. S., Lai, T. C., Chen, S. J., Shen, R., Huang, Y., Chen, H. C., Lee, C. H., Tsai, T. F., Hsu, M. T., Wu, J. C., Huang, H. D., Shiao, M. S., Hsiao, M., & Tsou, A. P. (2012). MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of Clinical Investigation, 122(8), 2884–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheung, O., Puri, P., Eicken, C., Contos, M. J., Mirshahi, F., Maher, J. W., Kellum, J. M., Min, H., Luketic, V. A., & Sanyal, A. J. (2008). Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology, 48(6), 1810–1820.

    Article  CAS  PubMed  Google Scholar 

  50. Halász, T., Horváth, G., Pár, G., Werling, K., Kiss, A., Schaff, Z., & Lendvai, G. (2015). miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan. World Journal of Gastroenterology, 21(25), 7814–7823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li, J., Ghazwani, M., Zhang, Y., Lu, J., Li, J., Fan, J., Gandhi, C. R., & Li, S. (2013). miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. Journal of Hepatology, 58(3), 522–528.

    Article  CAS  PubMed  Google Scholar 

  52. Shi, J., Aisaki, K., Ikawa, Y., & Wake, K. (1998). Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. The American Journal of Pathology, 153(2), 515–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Williams, A. T., & Burk, R. F. (1990). Carbon tetrachloride hepatotoxicity: An example of free radical-mediated injury. Seminars in Liver Disease, 10(4), 279–284.

    Article  CAS  PubMed  Google Scholar 

  54. Hsu, S. H., Wang, B., Kota, J., Yu, J., Costinean, S., Kutay, H., Yu, L., Bai, S., La Perle, K., Chivukula, R. R., Mao, H., Wei, M., Clark, K. R., Mendell, J. R., Caligiuri, M. A., Jacob, S. T., Mendell, J. T., & Ghoshal, K. (2012). Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. The Journal of Clinical Investigation, 122(8), 2871–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahsani, Z., Mohammadi-Yeganeh, S., Kia, V., Karimkhanloo, H., Zarghami, N., & Paryan, M. (2017). WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma. Applied Biochemistry and Biotechnology, 181(3), 884–897.

    Article  CAS  PubMed  Google Scholar 

  56. Cao, F., & Yin, L. X. (2019). miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 by targeting Wnt/β-catenin pathway. Experimental and Molecular Pathology, 106, 34–43.

    Article  CAS  PubMed  Google Scholar 

  57. Sun, Y., Wang, H., Li, Y., Liu, S., Chen, J., & Ying, H. (2018). miR-24 and miR-122 negatively regulate the transforming growth factor-β/Smad signaling pathway in skeletal muscle fibrosis. Mol Ther Nucleic Acids, 11, 528–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin, S., Fan, Y., Zhang, H., Zhao, Z., Hao, Y., Li, J., Sun, C., Yang, J., Yang, Z., Yang, X., Lu, J., & Xi, J. J. (2016). Differential TGFβ pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nature Communications, 7, 11012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schueller, F., Roy, S., Trautwein, C., Luedde, T., & Roderburg, C. (2016). miR-122 expression is not regulated during activation of hepatic stellate cells. Journal of Hepatology, 65(4), 865–867.

    Article  CAS  PubMed  Google Scholar 

  60. Guo, C. J., Pan, Q., Cheng, T., Jiang, B., Chen, G. Y., & Li, D. G. (2009). Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways. The FEBS Journal, 276(18), 5163–5176.

    Article  CAS  PubMed  Google Scholar 

  61. Hyun, J., Park, J., Wang, S., Kim, J., Lee, H. H., Seo, Y. S., & Jung, Y. (2016a). MicroRNA expression profiling in CCl4-induced liver fibrosis of Mus musculus. International Journal of Molecular Sciences, 17(6), 691.

    Article  CAS  Google Scholar 

  62. Hyun, J., Wang, S., Kim, J., Rao, K. M., Park, S. Y., Chung, I., Ha, C. S., Kim, S. W., Yun, Y. H., & Jung, Y. (2016b). MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nature Communications, 7, 10993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lakner, A. M., Steuerwald, N. M., Walling, T. L., Ghosh, S., Li, T., McKillop, I. H., Russo, M. W., Bonkovsky, H. L., & Schrum, L. W. (2012). Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology, 56(1), 300–310.

    Article  CAS  PubMed  Google Scholar 

  64. Roderburg, C., Urban, G. W., Bettermann, K., Vucur, M., Zimmermann, H., Schmidt, S., Janssen, J., Koppe, C., Knolle, P., Castoldi, M., Tacke, F., Trautwein, C., & Luedde, T. (2011). Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 53(1), 209–218.

    Article  CAS  PubMed  Google Scholar 

  65. McDaniel, K., Huang, L., Sato, K., Wu, N., Annable, T., Zhou, T., Ramos-Lorenzo, S., Wan, Y., Huang, Q., Francis, H., Glaser, S., Tsukamoto, H., Alpini, G., & Meng, F. (2017). The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. The Journal of Biological Chemistry, 292(27), 11336–11347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma, L., Liu, J., Xiao, E., Ning, H., Li, K., Shang, J., & Kang, Y. (2021). MiR-15b and miR-16 suppress TGF-β1-induced proliferation and fibrogenesis by regulating LOXL1 in hepatic stellate cells. Life Sciences, 270, 119144.

    Article  CAS  PubMed  Google Scholar 

  67. Kim, K. M., Han, C. Y., Kim, J. Y., Cho, S. S., Kim, Y. S., Koo, J. H., Lee, J. M., Lim, S. C., Kang, K. W., Kim, J. S., Hwang, S. J., Ki, S. H., & Kim, S. G. (2018). Gα(12) overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. Journal of Hepatology, 68(3), 493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lan, T., Li, C., Yang, G., Sun, Y., Zhuang, L., Ou, Y., Li, H., Wang, G., Kisseleva, T., Brenner, D., & Guo, J. (2018). Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology, 68(3), 1070–1086.

    Article  CAS  PubMed  Google Scholar 

  69. Brandon-Warner, E., Benbow, J. H., Swet, J. H., Feilen, N. A., Culberson, C. R., McKillop, I. H., deLemos, A. S., Russo, M. W., & Schrum, L. W. (2018). Adeno-associated virus serotype 2 vector-mediated reintroduction of microRNA-19b attenuates hepatic fibrosis. Human Gene Therapy, 29(6), 674–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Z., Zha, Y., Hu, W., Huang, Z., Gao, Z., Zang, Y., Chen, J., Dong, L., & Zhang, J. (2013). The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. The Journal of Biological Chemistry, 288(52), 37082–37093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ning, B. F., Ding, J., Liu, J., Yin, C., Xu, W. P., Cong, W. M., Zhang, Q., Chen, F., Han, T., Deng, X., Wang, P. Q., Jiang, C. F., Zhang, J. P., Zhang, X., Wang, H. Y., & Xie, W. F. (2014). Hepatocyte nuclear factor 4α-nuclear factor-κB feedback circuit modulates liver cancer progression. Hepatology, 60(5), 1607–1619.

    Article  CAS  PubMed  Google Scholar 

  72. Kennedy, L. L., Meng, F., Venter, J. K., Zhou, T., Karstens, W. A., Hargrove, L. A., Wu, N., Kyritsi, K., Greene, J., Invernizzi, P., Bernuzzi, F., Glaser, S. S., Francis, H. L., & Alpini, G. (2016). Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. Laboratory Investigation, 96(12), 1256–1267.

    Article  CAS  PubMed  Google Scholar 

  73. Wu, K., Ye, C., Lin, L., Chu, Y., Ji, M., Dai, W., Zeng, X., & Lin, Y. (2016). Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clinical Science (London, England), 130(16), 1469–1480.

    Article  CAS  Google Scholar 

  74. Genz, B., Coleman, M. A., Irvine, K. M., Kutasovic, J. R., Miranda, M., Gratte, F. D., Tirnitz-Parker, J. E. E., Olynyk, J. K., Calvopina, D. A., Weis, A., Cloonan, N., Robinson, H., Hill, M. M., Al-Ejeh, F., & Ramm, G. A. (2019). Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells. Scientific Reports, 9(1), 8541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li, Z., Ji, L., Su, S., Zhu, X., Cheng, F., Jia, X., Zhou, Q., & Zhou, Y. (2018b). Leptin up-regulates microRNA-27a/b-3p level in hepatic stellate cells. Experimental Cell Research, 366(1), 63–70.

    Article  CAS  PubMed  Google Scholar 

  76. Matsumoto, Y., Itami, S., Kuroda, M., Yoshizato, K., Kawada, N., & Murakami, Y. (2016). MiR-29a assists in preventing the activation of human stellate cells and promotes recovery from liver fibrosis in mice. Molecular Therapy, 24(10), 1848–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, Y. H., Tiao, M. M., Huang, L. T., Chuang, J. H., Kuo, K. C., Yang, Y. L., & Wang, F. S. (2015). Activation of Mir-29a in activated hepatic stellate cells modulates its profibrogenic phenotype through inhibition of histone deacetylases 4. PLoS One, 10(8), e0136453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Liang, C., Bu, S., & Fan, X. (2016). Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3. Cell Biochemistry and Function, 34(5), 326–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin, H. Y., Wang, F. S., Yang, Y. L., & Huang, Y. H. (2019). MicroRNA-29a suppresses CD36 to ameliorate high fat diet-induced steatohepatitis and liver fibrosis in mice. Cell, 8(10), 1298.

    Article  CAS  Google Scholar 

  80. Zheng, J., Wang, W., Yu, F., Dong, P., Chen, B., & Zhou, M. T. (2018). MicroRNA-30a suppresses the activation of hepatic stellate cells by inhibiting epithelial-to-mesenchymal transition. Cellular Physiology and Biochemistry, 46(1), 82–92.

    Article  CAS  PubMed  Google Scholar 

  81. Tu, X., Zheng, X., Li, H., Cao, Z., Chang, H., Luan, S., Zhu, J., Chen, J., Zang, Y., & Zhang, J. (2015). MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells. Toxicological Sciences, 146(1), 157–169.

    Article  CAS  PubMed  Google Scholar 

  82. Chen, J., Yu, Y., Li, S., Liu, Y., Zhou, S., Cao, S., Yin, J., & Li, G. (2017). MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy. Journal of Cellular and Molecular Medicine, 21(12), 3679–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, X., Chen, Y., Wu, S., He, J., Lou, L., Ye, W., & Wang, J. (2015). microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor γ. Molecular Medicine Reports, 11(2), 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  84. Li, W. Q., Chen, C., Xu, M. D., Guo, J., Li, Y. M., Xia, Q. M., Liu, H. M., He, J., Yu, H. Y., & Zhu, L. (2011). The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. The FEBS Journal, 278(9), 1522–1532.

    Article  CAS  PubMed  Google Scholar 

  85. Lei, Y., Wang, Q. L., Shen, L., Tao, Y. Y., & Liu, C. H. (2019). MicroRNA-101 suppresses liver fibrosis by downregulating PI3K/Akt/mTOR signaling pathway. Clinics and Research in Hepatology and Gastroenterology, 43(5), 575–584.

    Article  CAS  PubMed  Google Scholar 

  86. Tu, X., Zhang, H., Zhang, J., Zhao, S., Zheng, X., Zhang, Z., Zhu, J., Chen, J., Dong, L., Zang, Y., & Zhang, J. (2014). MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway. The Journal of Pathology, 234(1), 46–59.

    Article  CAS  PubMed  Google Scholar 

  87. Nakamura, M., Kanda, T., Sasaki, R., Haga, Y., Jiang, X., Wu, S., Nakamoto, S., & Yokosuka, O. (2015). MicroRNA-122 inhibits the production of inflammatory cytokines by targeting the PKR activator PACT in human hepatic stellate cells. PLoS One, 10(12), e0144295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Teng, K. Y., Barajas, J. M., Hu, P., Jacob, S. T., & Ghoshal, K. (2020). Role of B cell lymphoma 2 in the regulation of liver fibrosis in miR-122 knockout mice. Biology (Basel), 9(7), 157.

    CAS  Google Scholar 

  89. Hyun, J., Wang, S., Kim, J., Kim, G. J., & Jung, Y. (2015). MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Scientific Reports, 5, 14135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, Y., Du, J., Niu, X., Fu, N., Wang, R., Zhang, Y., Zhao, S., Sun, D., & Nan, Y. (2017). MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2. Cell Death & Disease, 8(5), e2792.

    Article  CAS  Google Scholar 

  91. Roderburg, C., Luedde, M., Vargas Cardenas, D., Vucur, M., Mollnow, T., Zimmermann, H. W., Koch, A., Hellerbrand, C., Weiskirchen, R., Frey, N., Tacke, F., Trautwein, C., & Luedde, T. (2013). miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. Journal of Hepatology, 58(4), 736–742.

    Article  CAS  PubMed  Google Scholar 

  92. Yang, X., Dan, X., Men, R., Ma, L., Wen, M., Peng, Y., & Yang, L. (2017b). MiR-142-3p blocks TGF-β-induced activation of hepatic stellate cells through targeting TGFβRI. Life Sciences, 187, 22–30.

    Article  CAS  PubMed  Google Scholar 

  93. Yang, J., Lu, Y., Yang, P., Chen, Q., Wang, Y., Ding, Q., Xu, T., Li, X., Li, C., Huang, C., Meng, X., Li, J., Zhang, L., & Wang, X. (2019). MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. Journal of Cellular Physiology, 234(5), 7587–7599.

    Article  CAS  PubMed  Google Scholar 

  94. Du, J., Niu, X., Wang, Y., Kong, L., Wang, R., Zhang, Y., Zhao, S., & Nan, Y. (2015). MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Scientific Reports, 5, 16163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zou, Y., Cai, Y., Lu, D., Zhou, Y., Yao, Q., & Zhang, S. (2017). MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cellular Signalling, 39, 1–8.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou, L., Liu, S., Han, M., Ma, Y., Feng, S., Zhao, J., Lu, H., Yuan, X., & Cheng, J. (2018). miR-185 inhibits fibrogenic activation of hepatic stellate cells and prevents liver fibrosis. Mol Ther Nucleic Acids, 10, 91–102.

    Article  CAS  PubMed  Google Scholar 

  97. Ju, B., Nie, Y., Yang, X., Wang, X., Li, F., Wang, M., Wang, C., & Zhang, H. (2019). miR-193a/b-3p relieves hepatic fibrosis and restrains proliferation and activation of hepatic stellate cells. Journal of Cellular and Molecular Medicine, 23(6), 3824–3832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Song, L. Y., Ma, Y. T., Wu, C. F., Wang, C. J., Fang, W. J., & Liu, S. K. (2017). MicroRNA-195 activates hepatic stellate cells in vitro by targeting Smad7. BioMed Research International, 2017, 1945631.

    PubMed  PubMed Central  Google Scholar 

  99. Bi, Z. M., Zhou, Q. F., Geng, Y., & Zhang, H. M. (2016). Human umbilical cord mesenchymal stem cells ameliorate experimental cirrhosis through activation of keratinocyte growth factor by suppressing microRNA-199. European Review for Medical and Pharmacological Sciences, 20(23), 4905–4912.

    PubMed  Google Scholar 

  100. Li, L., Ran, J., Li, L., Chen, G., Zhang, S., & Wang, Y. (2020). Gli3 is a novel downstream target of miR-200a with an anti-fibrotic role for progression of liver fibrosis in vivo and in vitro. Molecular Medicine Reports, 21(4), 1861–1871.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, J. J., Tao, H., Liu, L. P., Hu, W., Deng, Z. Y., & Li, J. (2017a). miR-200a controls hepatic stellate cell activation and fibrosis via SIRT1/Notch1 signal pathway. Inflammation Research, 66(4), 341–352.

    Article  CAS  PubMed  Google Scholar 

  102. Yu, F., Zheng, Y., Hong, W., Chen, B., Dong, P., & Zheng, J. (2015). MicroRNA-200a suppresses epithelial-to-mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Molecular Medicine Reports, 12(6), 8121–8128.

    Article  CAS  PubMed  Google Scholar 

  103. Ma, T., Cai, X., Wang, Z., Huang, L., Wang, C., Jiang, S., & Hua, Y. (2017). Liu Q (2017) miR-200c accelerates hepatic stellate cell-induced liver fibrosis via targeting the FOG2/PI3K pathway. BioMed Research International, 2670658. https://doi.org/10.1155/2017/2670658

  104. Ma, L., Yang, X., Wei, R., Ye, T., Zhou, J. K., Wen, M., Men, R., Li, P., Dong, B., Liu, L., Fu, X., Xu, H., Aqeilan, R. I., Wei, Y. Q., Yang, L., & Peng, Y. (2018). MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death & Disease, 9(7), 718.

    Article  CAS  Google Scholar 

  105. Okada, H., Honda, M., Campbell, J. S., Takegoshi, K., Sakai, Y., Yamashita, T., Shirasaki, T., Takabatake, R., Nakamura, M., Tanaka, T., & Kaneko, S. (2015). Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Science, 106(9), 1143–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dong, R., Zheng, Y., Chen, G., Zhao, R., Zhou, Z., & Zheng, S. (2015). miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. Journal of Pediatric Gastroenterology and Nutrition, 60(1), 84–90.

    Article  CAS  PubMed  Google Scholar 

  107. Jiang, X., Jiang, L., Shan, A., Su, Y., Cheng, Y., Song, D., Ji, H., Ning, G., Wang, W., & Cao, Y. (2018). Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice. eBioMedicine, 37, 307–321.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ogawa, T., Enomoto, M., Fujii, H., Sekiya, Y., Yoshizato, K., Ikeda, K., & Kawada, N. (2012). MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut, 61(11), 1600–1609.

    Article  CAS  PubMed  Google Scholar 

  109. Yu, F., Fan, X., Chen, B., Dong, P., & Zheng, J. (2016). Activation of hepatic stellate cells is inhibited by microRNA-378a-3p via Wnt10a. Cellular Physiology and Biochemistry, 39(6), 2409–2420.

    Article  CAS  PubMed  Google Scholar 

  110. Kim, J., Lee, C., Shin, Y., Wang, S., Han, J., Kim, M., Kim, J. M., Shin, S. C., Lee, B. J., Kim, T. J., & Jung, Y. (2020). sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Molecular Therapy, 29(4), 1471–1486.Published online December 19. https://doi.org/10.1016/j.ymthe.2020.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ji, F., Wang, K., Zhang, Y., Mao, X. L., Huang, Q., Wang, J., Ye, L., & Li, Y. (2019). MiR-542-3p controls hepatic stellate cell activation and fibrosis via targeting BMP-7. Journal of Cellular Biochemistry, 120(3), 4573–4581.

    Article  CAS  PubMed  Google Scholar 

  112. Tao, L., Xue, D., Shen, D., Ma, W., Zhang, J., Wang, X., Zhang, W., Wu, L., Pan, K., Yang, Y., Nwosu, Z. C., Dooley, S., Seki, E., & Liu, C. (2018). MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis. Archives of Toxicology, 92(9), 2935–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tao, L., Wu, L., Zhang, W., Ma, W. T., Yang, G. Y., Zhang, J., Xue, D. Y., Chen, B., & Liu, C. (2020). Peroxisome proliferator-activated receptor γ inhibits hepatic stellate cell activation regulated by miR-942 in chronic hepatitis B liver fibrosis. Life Sciences, 253, 117572.

    Article  CAS  PubMed  Google Scholar 

  114. Noetel, A., Kwiecinski, M., Elfimova, N., Huang, J., & Odenthal, M. (2012). microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis. Front Physiol, 3, 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huang, Y. H., Yang, Y. L., & Wang, F. S. (2018). The role of miR-29a in the regulation, function, and signaling of liver fibrosis. International Journal of Molecular Sciences, 19(7), 1889.

    Article  PubMed Central  CAS  Google Scholar 

  116. Sekiya, Y., Ogawa, T., Yoshizato, K., Ikeda, K., & Kawada, N. (2011). Suppression of hepatic stellate cell activation by microRNA-29b. Biochemical and Biophysical Research Communications, 412(1), 74–79.

    Article  CAS  PubMed  Google Scholar 

  117. Knabel, M. K., Ramachandran, K., Karhadkar, S., Hwang, H. W., Creamer, T. J., Chivukula, R. R., Sheikh, F., Clark, K. R., Torbenson, M., Montgomery, R. A., Cameron, A. M., Mendell, J. T., & Warren, D. S. (2015). Systemic delivery of scAAV8-encoded MiR-29a ameliorates hepatic fibrosis in carbon tetrachloride-treated mice. PLoS One, 10(4), e0124411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wang, J., Chu, E. S., Chen, H. Y., Man, K., Go, M. Y., Huang, X. R., Lan, H. Y., Sung, J. J., & Yu, J. (2015). microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget, 6(9), 7325–7338.

    Article  PubMed  Google Scholar 

  119. Zhang, Y., Ghazwani, M., Li, J., Sun, M., Stolz, D. B., He, F., Fan, J., Xie, W., & Li, S. (2014). MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase. Biochemical and Biophysical Research Communications, 446(4), 940–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kwiecinski, M., Elfimova, N., Noetel, A., Töx, U., Steffen, H. M., Hacker, U., Nischt, R., Dienes, H. P., & Odenthal, M. (2012). Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Laboratory Investigation, 92(7), 978–987.

    Article  CAS  PubMed  Google Scholar 

  121. Kwiecinski, M., Noetel, A., Elfimova, N., Trebicka, J., Schievenbusch, S., Strack, I., Molnar, L., von Brandenstein, M., Töx, U., Nischt, R., Coutelle, O., Dienes, H. P., & Odenthal, M. (2011). Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One, 6(9), e24568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roy, S., Benz, F., Vargas Cardenas, D., Vucur, M., Gautheron, J., Schneider, A., Hellerbrand, C., Pottier, N., Alder, J., Tacke, F., Trautwein, C., Roderburg, C., & Luedde, T. (2015). miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis. Journal of Digestive Diseases, 16(9), 513–524.

    Article  CAS  PubMed  Google Scholar 

  123. Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., Herias, V., van Leeuwen, R. E., Schellings, M. W., Barenbrug, P., Maessen, J. G., Heymans, S., Pinto, Y. M., & Creemers, E. E. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178.

    Article  CAS  PubMed  Google Scholar 

  124. Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., Grazi, G. L., Giovannini, C., Croce, C. M., Bolondi, L., & Negrini, M. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.

    Article  CAS  PubMed  Google Scholar 

  125. Iizuka, M., Ogawa, T., Enomoto, M., Motoyama, H., Yoshizato, K., Ikeda, K., & Kawada, N. (2012). Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis & Tissue Repair, 5(1), 12.

    Article  CAS  Google Scholar 

  126. Chen, X., Mangala, L. S., Rodriguez-Aguayo, C., Kong, X., Lopez-Berestein, G., & Sood, A. K. (2018). RNA interference-based therapy and its delivery systems. Cancer Metastasis Reviews, 37(1), 107–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dowdy, S. F. (2017). Overcoming cellular barriers for RNA therapeutics. Nature Biotechnology, 35(3), 222–229.

    Article  CAS  PubMed  Google Scholar 

  128. Lee, S. W. L., Paoletti, C., Campisi, M., Osaki, T., Adriani, G., Kamm, R. D., Mattu, C., & Chiono, V. (2019). MicroRNA delivery through nanoparticles. Journal of Controlled Release, 313, 80–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Raemdonck, K., Vandenbroucke, R. E., Demeester, J., Sanders, N. N., & De Smedt, S. C. (2008). Maintaining the silence: Reflections on long-term RNAi. Drug Discovery Today, 13(21–22), 917–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Giacca, M., & Zacchigna, S. (2012). Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 161(2), 377–388.

    Article  CAS  PubMed  Google Scholar 

  131. Kasuya, T., & Kuroda, S. (2009). Nanoparticles for human liver-specific drug and gene delivery systems: In vitro and in vivo advances. Expert Opinion on Drug Delivery, 6(1), 39–52.

    Article  CAS  PubMed  Google Scholar 

  132. Sen Gupta, A., & Lopina, S. T. (2004). Synthesis and characterization of l-tyrosine based novel polyphosphates for potential biomaterial applications. Polymer, 45(14), 4653–4662.

    Google Scholar 

  133. Sen Gupta, A., & Lopina, S. T. (2005). Properties of l-tyrosine based polyphosphates pertinent to potential biomaterial applications. Polymer, 46(7), 2133–2140.

    Google Scholar 

  134. Hu, F., Yang, D., Qian, B., Fan, S., Zhu, Q., Ren, H., Li, X., & Zhai, B. (2019). The exogenous delivery of microRNA-449b-5p using spermidine-PLGA nanoparticles efficiently decreases hepatic injury. RSC Advances, 9(60), 35135–35144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmi Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Yun, Y.H., Jung, Y. (2022). Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery in the Treatment of Liver Fibrosis. In: Yun, Y.H., Yoder, K.E. (eds) Biotechnologies for Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-93333-3_1

Download citation

Publish with us

Policies and ethics