Skip to main content

Advertisement

Log in

Cost-Utility Analysis of Dapagliflozin Versus Saxagliptin Treatment as Monotherapy or Combination Therapy as Add-on to Metformin for Treating Type 2 Diabetes Mellitus

  • Original Research Article
  • Published:
Applied Health Economics and Health Policy Aims and scope Submit manuscript

Abstract

Objective

To assess the long-term cost effectiveness of dapagliflozin (DAPA) and saxagliptin (SAXA) separately or together in patients with type 2 diabetes mellitus (T2DM) inadequately controlled by metformin (MET).

Methods

Five head-to-head randomised controlled trials of the efficacy of DAPA and SAXA in type 2 diabetes mellitus (T2DM) patients were found by searching PubMed, Embase and Cochrane from inception to October 2019. The lifetime disease progression and long-term effectiveness of therapy in patients were projected by the United Kingdom Prospective Diabetes Study Outcome Model 2 (UKPDS OM2) in three T2DM therapeutic groups: DAPA + SAXA, DAPA and SAXA. Each group used DAPA and/or SAXA as an add-on therapy to MET. The study took the perspective of Chinese healthcare service providers. Univariate, scenario and probabilistic sensitivity analyses were performed.

Results

The quality-adjusted life-years (QALYs) value of the DAPA + SAXA, SAXA and DAPA groups were 11.28, 11.26 and 11.45 years, respectively. The total costs were US$27,954.84, US$23,254.46 and US$25,608.49, respectively. DAPA was dominant over DAPA + SAXA. The DAPA + SAXA group presented an estimated QALY gain of 0.02 and a total cost increase of US$4700.39 over the SAXA group, with an incremental cost of US$217,530.10 per QALY. Compared with the SAXA group, the DAPA group had a QALY gain of 0.19 years and a total cost increase of US$2354.04, for an incremental cost of US$12,191.97 per QALY. The pharmacoeconomic results were robust to univariate, scenario and probabilistic sensitivity analyses.

Conclusions

Compared with DAPA + SAXA or SAXA, DAPA appears to be a cost-effective therapy as add-on to MET for Chinese patients whose T2DM is insufficiently controlled by MET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Diabetes Foundation, International Diabetes Federation-Facts & Figures, 2019.

  2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. https://doi.org/10.1038/nrendo.2017.151.NatRevEndocrinol.

    Article  PubMed  Google Scholar 

  3. Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA J Am Med Assoc. 2013;310(9):948–59. https://doi.org/10.1001/jama.2013.168118.

    Article  CAS  Google Scholar 

  4. Jia W, Weng J, Zhu D, et al. Standards of medical care for type 2 diabetes in China 2019, Diabetes. Metab Res Rev. 2019;35(6):e3158. https://doi.org/10.1002/dmrr.3158(Epub 2019 May 29).

    Article  Google Scholar 

  5. Bommer C, Heesemann E, Sagalova V, et al. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5:423–30. https://doi.org/10.1016/S2213-8587(17)30097-9.

    Article  PubMed  Google Scholar 

  6. Shao H, Zhai S, Zou D, et al. Cost-effectiveness analysis of dapagliflozin versus glimepiride as monotherapy in a Chinese population with type 2 diabetes mellitus. Curr Med Res Opin. 2017;33(2):359–69. https://doi.org/10.1080/03007995.2016.1257978.

    Article  CAS  PubMed  Google Scholar 

  7. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants NCD Risk Factor Collaboration (NCD-RisC) Europe PMC Funders Group. Lancet. 2016;387(10027):1513–30. https://doi.org/10.1016/S0140-6736(16)00618-8.

    Article  Google Scholar 

  8. International Diabetes Federation, International Diabetes Federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation. 2015. https://www.diabetesatlas.org. https://doi.org/10.1289/image.ehp.v119.i03.

  9. Foos V, Wang K, McEwan P, et al. Assessing the burden of type 2 diabetes in China considering the current Status-Quo Management and implications of improved management using a modeling approach. Value Health Reg Issues. 2019;18:36–46. https://doi.org/10.1016/j.vhri.2018.08.006.

    Article  PubMed  Google Scholar 

  10. Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA J Am Med Assoc. 2017;317(24):2515–23. https://doi.org/10.1001/jama.2017.7596.

    Article  Google Scholar 

  11. Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. https://doi.org/10.1056/NEJMoa0806470.

    Article  CAS  PubMed  Google Scholar 

  12. Müller-Wieland D, Kellerer M, Cypryk K, et al. Efficacy and safety of dapagliflozin or dapagliflozin plus saxagliptin versus glimepiride as add-on to metformin in patients with type 2 diabetes. Diabetes Obes Metab. 2018;20(11):2598–607. https://doi.org/10.1111/dom.13437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenstock J, Perl S, Johnsson E, et al. Triple therapy with low-dose dapagliflozin plus saxagliptin versus dual therapy with each monocomponent, all added to metformin, in uncontrolled type 2 diabetes. Diabetes Obes Metab. 2019;21(9):2152–62. https://doi.org/10.1111/dom.13795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vivian EM. Dapagliflozin: a new sodium-glucose cotransporter 2 inhibitor for treatment of type 2 diabetes. Am J Heal Pharm. 2015;72(5):361–72. https://doi.org/10.2146/ajhp140168.

    Article  CAS  Google Scholar 

  15. Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-Naïve type 2 diabetes. Diabetes Care. 2016;39(3):353–62. https://doi.org/10.2337/dc15-1736.

    Article  PubMed  Google Scholar 

  16. Hadjadj S, Rosenstock J, Meinicke T, et al. Initial combination of Empagliflozin and Metformin in patients with type 2 diabetes. Diabetes Care. 2016;39(10):1718–28. https://doi.org/10.2337/dc16-0522.

    Article  CAS  PubMed  Google Scholar 

  17. Whaley JM, Tirmenstein M, Reilly TP, et al. Targeting the kidney and glucose excretion with dapagliflozin: Preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus. Diabetes Metab Syndr Obes Targets Ther. 2012;5:135–48. https://doi.org/10.2147/dmso.s22503.

    Article  CAS  Google Scholar 

  18. Men P, Li X, Tang H, et al. Efficacy and safety of saxagliptin in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2018;13(5):e0197321. https://doi.org/10.1371/journal.pone.0197321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neumiller JJ. Efficacy and safety of saxagliptin as add-on therapy in type 2 diabetes. Clin Diabetes. 2014;32(4):170–7. https://doi.org/10.2337/diaclin.32.4.170.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Toth PP. Overview of saxagliptin efficacy and safety in patients with type 2 diabetes and cardiovascular disease or risk factors for cardiovascular disease. Vasc Health Risk Manag. 2015;11:9–23. https://doi.org/10.2147/VHRM.S75215.

    Article  PubMed  Google Scholar 

  21. Rosenstock J, Hansen L, Zee P, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapaglif lozin to metformin. Diabetes Care. 2015;38(3):376–83. https://doi.org/10.2337/dc14-1142.

    Article  CAS  PubMed  Google Scholar 

  22. Matthaei S, Catrinoiu D, Celiński A, et al. Randomized, Double-Blind trial of triple therapy with saxagliptin add-on to dapagliflozin plus metformin in patients with type 2 diabetes. Diabetes Care. 2015;38(11):2018–24. https://doi.org/10.2337/dc15-0811.

    Article  CAS  PubMed  Google Scholar 

  23. Mathieu C, Ranetti AE, Li D, et al. Randomized, Double-Blind, phase 3 trial of triple therapy with dapagliflozin add-on to saxagliptin plus metformin in type 2 diabetes. Diabetes Care. 2015;38(11):2009–177. https://doi.org/10.2337/dc15-0779.

    Article  CAS  PubMed  Google Scholar 

  24. Garnock-Jones KP. Saxagliptin/dapagliflozin: a review in type 2 diabetes mellitus. Drugs. 2017;77(3):319–30. https://doi.org/10.1007/s40265-017-0697-1.

    Article  CAS  PubMed  Google Scholar 

  25. Hayes AJ, Leal J, Gray AM, et al. UKPDS Outcomes Model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year united kingdom prospective diabetes study: UKPDS 82. Diabetologia. 2013;56(9):1925–33. https://doi.org/10.1007/s00125-013-2940-y.

    Article  CAS  PubMed  Google Scholar 

  26. University of Oxford, Diabetes Trials Unit, Health Economics Research Centre, UKPDS Outcomes Model User Manual, 2015, Isis Innovation Ltd Version 2.0. Produced by the University of Oxford Diabetes Trials Unit (DTU) and Health Economics Research Centre (HERC). https://www.dtu.ox.ac.uk/outcomesmodel. Accessed 11 May 2015

  27. Varney JE, Liew D, Weiland TJ, et al. The cost-effectiveness of hospital-based telephone coaching for people with type 2 diabetes: a 10 year modelling analysis. BMC Health Serv Res. 2016;16(1):521. https://doi.org/10.1186/s12913-016-1645-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou X, Wan X, Wu B. Cost-effectiveness of canagliflozin versus dapagliflozin added to metformin in patients with type 2 diabetes in China. Front Pharmacol. 2019;10:1–8. https://doi.org/10.3389/fphar.2019.00480.

    Article  CAS  Google Scholar 

  29. Organization WH. The World Health report 2002. [J]. midwifery. 2003;19(1):72. https://www.who.int/whr/2002/en/Chapter5.pdf?ua¼1

  30. Pollock RF, Valentine WJ, Marso SP, et al. Long-term cost-effectiveness of insulin degludec versus insulin glargine U100 in the UK: evidence from the basal-bolus subgroup of the DEVOTE Trial (DEVOTE 16). Appl Health Econ Health Policy. 2019;17(5):615–27. https://doi.org/10.1007/s40258-019-00494-3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao L, Zhao FL, Li SC. Cost-utility analysis of liraglutide versus glimepiride as add-on to metformin in type 2 diabetes patients in China. Int J Technol Assess Health Care. 2012;28(4):436–44. https://doi.org/10.1017/S0266462312000608.

    Article  PubMed  Google Scholar 

  32. Li X, Xu Z, Ji L, et al. Direct medical costs for patients with type 2 diabetes in 16 tertiary hospitals in urban China: a multicenter prospective cohort study. J Diabetes Investig. 2019;10(2):539–51. https://doi.org/10.1111/jdi.12905.

    Article  PubMed  Google Scholar 

  33. Cai X, Shi L, Yang W, et al. Cost-effectiveness analysis of dapagliflozin treatment versus metformin treatment in Chinese population with type 2 diabetes. J Med Econ. 2019;22(4):336–43. https://doi.org/10.1080/13696998.2019.1570220.

    Article  PubMed  Google Scholar 

  34. Basson M, Ntais D, Ayyub R, et al. The cost-effectiveness of dulaglutide 1.5 mg versus exenatide QW for the treatment of patients with type 2 diabetes mellitus in France. Diabetes Ther. 2018;9(1):13–25. https://doi.org/10.1007/s13300-017-0321-0.

    Article  CAS  PubMed  Google Scholar 

  35. Pan CW, Sun HP, Zhou HJ, et al. Valuing health-related quality of life in type 2 diabetes patients in China. Med Decis Mak. 2016;36(2):234–41. https://doi.org/10.1177/0272989X15606903.

    Article  Google Scholar 

  36. Clarke P, Gray A, Holman R. Estimating utility values for health states of type 2 diabetic patients using the EQ-5D (UKPDS 62). Med Decis Making. 2002;22(4):340–9.

    Article  Google Scholar 

  37. Wu B, Zhang S, Lin H, et al. Prevention of renal failure in Chinese patients with newly diagnosed type 2 diabetes: a cost-effectiveness analysis. J Diabetes Investig. 2018;9(1):152–61. https://doi.org/10.1111/jdi.12653.

    Article  CAS  PubMed  Google Scholar 

  38. Wu B, Wan X, Ma J. Cost-effectiveness of prevention and management of diabetic foot ulcer and amputation in a health resource-limited setting. J Diabetes. 2018;10(4):320–7. https://doi.org/10.1111/1753-0407.12612.

    Article  PubMed  Google Scholar 

  39. Bertram MY, Lauer JA, De Joncheere K, et al. Cost-effectiveness thresholds: pros and cons. World Health Organ. 2016;94(12):925–30. https://doi.org/10.2471/BLT.15.164418.

    Article  Google Scholar 

  40. Sante HA. A methodological guide: choices in methods for economic evaluation. Choices Methods Econ Eval. 2012. https://www.has-sante.fr/portail/upload/docs/application/pdf/2012-10/choices_in_methods_for_economic_evaluation.pdf.

  41. Gu S, Mu Y, Zhai S, et al. Cost-Effectiveness of dapagliflozin versus acarbose as a monotherapy in type 2 diabetes in China. PLoS One. 2016;11(11):e0165629. https://doi.org/10.1371/journal.pone.0165629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu S, Deng J, Shi L, et al. Cost-effectiveness of saxagliptin vs glimepiride as a second-line therapy added to metformin in Type 2 diabetes in China. J Med Econ. 2015;18(10):808–20. https://doi.org/10.3111/13696998.2015.1049542.

    Article  PubMed  Google Scholar 

  43. Gu S, Zeng Y, Yu D, et al. Cost-effectiveness of saxagliptin versus acarbose as second-line therapy in type 2 diabetes in China. PLoS One. 2016;11(11):e0167190. https://doi.org/10.1371/journal.pone.0167190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clarke PM, Gray AM, Briggs A, et al. A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia. 2004;47(10):1747–59. https://doi.org/10.1007/s00125-004-1527-z.

    Article  CAS  PubMed  Google Scholar 

  45. Chakravarty A, Rastogi M, Dhankhar P, et al. Comparison of costs and outcomes of dapagliflozin with other glucose-lowering therapy classes added to metformin using a short-term cost-effectiveness model in the US setting. J Med Econ. 2018;21(5):497–509. https://doi.org/10.1080/13696998.2018.1434182.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The UKPDS Outcomes Model Software (Version 2) were provided by The Chancellor, Masters & Scholars of the University of Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Funding

This work was supported by the Wu Jieping Medical Foundation of China (Grant numbers 320.6750.2020–04-22).

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Author contributions

YW and SH contributed to the study conception and design. Material preparation, data collection and analysis were performed by SH and YW. YM and ZL supervised the process of data collection and analysis. The first draft of the manuscript was written by SH and XD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Availability of data and materials

The data and materials generated or analysed during this study are available from the corresponding author on reasonable request.

Consent for publication

The manuscript is approved by all authors for publication.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Deng, X., Ma, Y. et al. Cost-Utility Analysis of Dapagliflozin Versus Saxagliptin Treatment as Monotherapy or Combination Therapy as Add-on to Metformin for Treating Type 2 Diabetes Mellitus. Appl Health Econ Health Policy 19, 69–79 (2021). https://doi.org/10.1007/s40258-020-00603-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40258-020-00603-7

Navigation