Skip to main content
Log in

Diabetic Foot Ulcers: Appraising Standard of Care and Reviewing New Trends in Management

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Diabetic foot ulcers (DFU) are one of the most common diabetes complications and are associated with significant morbidity and mortality. Current DFU standard of care (SOC) involves four principles: (1) pressure relief, (2) debridement, (3) infection management, and (4) revascularization when indicated. Despite the current SOC, many DFU persist, warranting a new approach for the management of these complex wounds. This review aims to summarize the current SOC as well as the latest trends in adjunctive therapies that may become the new SOC in DFU management. These include negative pressure wound therapy and hyperbaric oxygen therapy, bioengineered skin substitutes, growth factors, shockwave therapy, and several others. These novel therapies have shown significant DFU clinical improvement among subsets of DFU patients. However, much of the literature comes from smaller trials with inconsistent patient selection and outcomes measured, making it difficult to assess the true clinical benefit of these treatments. While novel therapies are promising for the interdisciplinary approach to DFU management, many still lack sufficient evidence, and their efficacy remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017. https://doi.org/10.1056/nejmra1615439.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb amputation: basis for prevention. Diabetes Care. 1990. https://doi.org/10.2337/diacare.13.5.513.

    Article  PubMed  Google Scholar 

  3. Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA. Healing diabetic neuropathic foot ulcers: are we getting better? Diabet Med. 2005. https://doi.org/10.1111/j.1464-5491.2004.01375.x.

    Article  PubMed  Google Scholar 

  4. American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes—2019. Diabetes Care. 2019;42(Suppl 1):S124–38. https://doi.org/10.2337/dc19-S011.

    Article  Google Scholar 

  5. Reiber GE, Vileikyte L, Boyko EJ, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999. https://doi.org/10.2337/diacare.22.1.157.

    Article  PubMed  Google Scholar 

  6. Uccioli L, Faglia E, Monticone G, et al. Manufactured shoes in the prevention of diabetic foot ulcers. Diabetes Care. 1995. https://doi.org/10.2337/diacare.18.10.1376.

    Article  PubMed  Google Scholar 

  7. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  8. Egan AM, Dinneen SF. In-hospital metabolic regulation in patients with a diabetic foot ulcer: is it worthwhile? Diabetes Metab Res Rev. 2016. https://doi.org/10.1002/dmrr.2741.

    Article  PubMed  Google Scholar 

  9. Vas PRJ, Edmonds ME, Papanas N. Nutritional supplementation for diabetic foot ulcers: the big challenge. Int J Low Extrem Wounds. 2017. https://doi.org/10.1177/1534734617740254.

    Article  PubMed  Google Scholar 

  10. Razzaghi R, Pourbagheri H, Momen-heravi M, et al. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat. 2017;31(4):766–72. https://doi.org/10.1016/j.jdiacomp.2016.06.017.

    Article  PubMed  Google Scholar 

  11. Afzali H, Jafari Kashi AH, Momen-Heravi M, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2019. https://doi.org/10.1111/wrr.12701.

    Article  PubMed  Google Scholar 

  12. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care. 2003. https://doi.org/10.2337/diacare.26.6.1879.

    Article  PubMed  Google Scholar 

  13. Lavery LA, Davis KE, Berriman SJ, et al. WHS guidelines update: diabetic foot ulcer treatment guidelines. Wound Repair Regen. 2016. https://doi.org/10.1111/wrr.12391.

    Article  PubMed  Google Scholar 

  14. Pound N, Chipchase S, Treece K, Game F, Jeffcoate W. Ulcer-free survival following management of foot ulcers in diabetes. Diabet Med. 2005. https://doi.org/10.1111/j.1464-5491.2005.01640.x.

    Article  PubMed  Google Scholar 

  15. Boulton AJM, Armstrong DG, Kirsner RS, et al. Diagnosis and management of diabetic foot complications. Diabetes. 2018. https://doi.org/10.2337/DB20182-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lipsky BA, Berendt AR, Cornia PB, et al. Executive summary: 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012. https://doi.org/10.1093/cid/cis460.

    Article  PubMed  Google Scholar 

  17. Alexiadou K, Doupis J. Management of diabetic foot ulcers. Diabetes Ther. 2012;3(1):4.

    Article  Google Scholar 

  18. Margolin L, Gialanella P. Assessment of the antimicrobial properties of maggots. Int Wound J. 2010. https://doi.org/10.1111/j.1742-481X.2010.00234.x.

    Article  PubMed  Google Scholar 

  19. Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia. 2007. https://doi.org/10.1007/s00125-006-0491-1.

    Article  PubMed  Google Scholar 

  20. Kobayashi N, Hirano K, Yamawaki M, et al. Characteristics and clinical outcomes of repeat endovascular therapy after infrapopliteal balloon angioplasty in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2018. https://doi.org/10.1002/ccd.27238.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Causey MW, Ahmed A, Wu B, et al. Society for vascular surgery limb stage and patient risk correlate with outcomes in an amputation prevention program. J Vasc Surg. 2016. https://doi.org/10.1016/j.jvs.2016.01.011.

    Article  PubMed  Google Scholar 

  22. Franklin C, Stoffels-Weindorf M, Hillen U, Dissemond J. Ulcerated necrobiosis lipoidica as a rare cause for chronic leg ulcers: case report series of ten patients. Int Wound J. 2015. https://doi.org/10.1111/iwj.12159.

    Article  PubMed  Google Scholar 

  23. Pimenta R, Roda Â, Freitas JP. Ulcerated necrobiosis lipoidica. Acta Med Port. 2018. https://doi.org/10.20344/amp.10477.

    Article  PubMed  Google Scholar 

  24. Wynn M, Freeman S. The efficacy of negative pressure wound therapy for diabetic foot ulcers: a systematised review. J Tissue Viability. 2019. https://doi.org/10.1016/j.jtv.2019.04.001.

    Article  PubMed  Google Scholar 

  25. Goggins CA, Khachemoune A. The use of hyperbaric oxygen therapy in the treatment of necrotizing soft tissue infections, compromised grafts and flaps, hidradenitis suppurativa, and pyoderma gangrenosum. Acta Dermatovenerologica Alp Pannonica Adriat. 2019. https://doi.org/10.15570/actaapa.2019.20.

    Article  Google Scholar 

  26. Huang ET, Mansouri J, Murad MH, et al. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb Med. 2015;42(3):205–47. http://www.ncbi.nlm.nih.gov/pubmed/26152105.

  27. Löndahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care. 2010. https://doi.org/10.2337/dc09-1754.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer: a randomized study. Diabetes Care. 1996. https://doi.org/10.2337/diacare.19.12.1338.

    Article  PubMed  Google Scholar 

  29. Fedorko L, Bowen JM, Jones W, et al. Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial. Diabetes Care. 2016. https://doi.org/10.2337/dc15-2001.

    Article  PubMed  Google Scholar 

  30. Santema KTB, Stoekenbroek RM, Koelemay MJW, et al. Hyperbaric oxygen therapy in the treatment of ischemic lower-extremity ulcers in patients with diabetes: results of the DAMO2CLES multicenter randomized clinical trial. Diabetes Care. 2018. https://doi.org/10.2337/dc17-0654.

    Article  PubMed  Google Scholar 

  31. Ma L, Li P, Shi Z, Hou T, Chen X, Du J. A prospective, randomized, controlled study of hyperbaric oxygen therapy: effects on healing and oxidative stress of ulcer tissue in patients with a diabetic foot ulcer. Ostomy Wound Manag. 2013;59(3):18–24.

    Google Scholar 

  32. Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatolog Treat. 2018. https://doi.org/10.1080/09546634.2018.1530443.

    Article  Google Scholar 

  33. Santema TBK, Poyck PPC, Ubbink DT. Systematic review and meta-analysis of skin substitutes in the treatment of diabetic foot ulcers: highlights of a Cochrane systematic review. Wound Repair Regen. 2016. https://doi.org/10.1111/wrr.12434.

    Article  PubMed  Google Scholar 

  34. Luck J, Rodi T, Geierlehner A, Mosahebi A. Allogeneic skin substitutes versus human placental membrane products in the management of diabetic foot ulcers: a narrative comparative evaluation of the literature. Int J Low Extrem Wounds. 2019. https://doi.org/10.1177/1534734618818301.

    Article  PubMed  Google Scholar 

  35. Martinson M, Martinson N. A comparative analysis of skin substitutes used in the management of diabetic foot ulcers. J Wound Care. 2016. https://doi.org/10.12968/jowc.2016.25.sup10.s8.

    Article  PubMed  Google Scholar 

  36. Waymack P, Duff RG, Sabolinski M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. Burns. 2000. https://doi.org/10.1016/S0305-4179(00)00017-6.

    Article  PubMed  Google Scholar 

  37. Koob TJ, Lim JJ, Massee M, Zabek N, Denozière G. Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. J Biomed Mater Res Part B Appl Biomater. 2014. https://doi.org/10.1002/jbm.b.33141.

    Article  PubMed  Google Scholar 

  38. Tettelbach W, Cazzell S, Reyzelman AM, Sigal F, Caporusso JM, Agnew PS. A confirmatory study on the efficacy of dehydrated human amnion/chorion membrane dHACM allograft in the management of diabetic foot ulcers: a prospective, multicentre, randomised, controlled study of 110 patients from 14 wound clinics. Int Wound J. 2019. https://doi.org/10.1111/iwj.12976.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zelen CM, Gould L, Serena TE, Carter MJ, Keller J, Li WW. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J. 2015. https://doi.org/10.1111/iwj.12395.

    Article  PubMed  Google Scholar 

  40. Tchanque-Fossuo CN, Dahle SE, Lev-Tov H, et al. Cellular versus acellular matrix devices in the treatment of diabetic foot ulcers: interim results of a comparative efficacy randomized controlled trial. J Tissue Eng Regen Med. 2019. https://doi.org/10.1002/term.2884.

    Article  PubMed  Google Scholar 

  41. Papanas N, Maltezos E. Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf. 2010. https://doi.org/10.2165/11534570-000000000-00000.

    Article  PubMed  Google Scholar 

  42. Gilligan AM, Waycaster CR, Motley TA. Cost-effectiveness of becaplermin gel on wound healing of diabetic foot ulcers. Wound Repair Regen. 2015. https://doi.org/10.1111/wrr.12285.

    Article  PubMed  Google Scholar 

  43. Hirase T, Ruff E, Surani S, Ratnani I. Topical application of platelet-rich plasma for diabetic foot ulcers: a systematic review. World J Diabetes. 2018. https://doi.org/10.4239/wjd.v9.i10.172.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lopes L, Setia O, Aurshina A, et al. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther. 2018. https://doi.org/10.1186/s13287-018-0938-6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu SM, Liang T. Clinical observation of the application of autologous peripheral blood stem cell transplantation for the treatment of diabetic foot gangrene. Exp Ther Med. 2016. https://doi.org/10.3892/etm.2015.2888.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY. Clinical evaluation of human umbilical cord mesenchymal stem cell transplantation after angioplasty for diabetic foot. Exp Clin Endocrinol Diabetes. 2016. https://doi.org/10.1055/s-0042-103684.

    Article  PubMed  Google Scholar 

  47. Huang Q, Yan P, Xiong H, et al. Extracorporeal shock wave therapy for treating foot ulcers in adults with type 1 and type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Can J Diabetes. 2019. https://doi.org/10.1016/j.jcjd.2019.05.006.

    Article  PubMed  Google Scholar 

  48. Snyder R, Galiano R, Mayer P, Rogers LC, Alvarez O. Diabetic foot ulcer treatment with focused shockwave therapy: two multicentre, prospective, controlled, double-blinded, randomised phase III clinical trials. J Wound Care. 2018. https://doi.org/10.12968/jowc.2018.27.12.822.

    Article  PubMed  Google Scholar 

  49. Ramadhinara A, Poulas K. Use of wireless microcurrent stimulation for the treatment of diabetes-related wounds: 2 case reports. Adv Skin Wound Care. 2013. https://doi.org/10.1097/01.ASW.0000425942.32993.e9.

    Article  PubMed  Google Scholar 

  50. Wirsing PG, Habrom AD, Zehnder TM, Friedli S, Blatti M. Wireless micro current stimulation - an innovative electrical stimulation method for the treatment of patients with leg and diabetic foot ulcers. Int Wound J. 2015. https://doi.org/10.1111/iwj.12204.

    Article  PubMed  Google Scholar 

  51. Schneider WL, Severn M. Prevention of plantar ulcers in people with diabetic peripheral neuropathy using pressure-sensing shoe insoles. CADTH issues in emerging health technologies. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2016. p. 160.

  52. Abbott C, Chatwin K, Hasan A, et al. Novel Plantar pressure-sensing smart insoles reduce foot ulcer incidence in ‘high-risk’ diabetic patients: a longitudinal study [abstract]. In: 54th annual meeting of the European association for the study of diabetes; 2018 Oct 1–5; Berlin, Germany. Abstract no 7.

  53. Chan C. Diabetes foot care clinical pathway—Orpyx Medical Technologies (DFCCP-Orpyx). ClinicalTrials.gov [Internet]. Bethesda, MD: U.S. National Library of Medicine; 2016. https://clinicaltrials.gov/ct2/show/NCT02994966?term=diabetes+foot+care+clinical+pathway&rank=2. Cited 8 Feb 2017, last updated 13 Dec 2016.

  54. Manji K. Pressure-sensing insoles in the neuropathic ulcer treatment pathway (PINUP). ClinicalTrials.gov [Internet]. Bethesda, MD: U.S. National Library of Medicine; 2015. https://clinicaltrials.gov/ct2/show/NCT02586519?term=pressure-sensing+insoles+in+the+neuropathic+ulcer&rank=1. Cited 8 Feb 2017, last updated 2 June 2016.

  55. Reyzelman AM, Koelewyn K, Murphy M, et al. Continuous temperature-monitoring socks for home use in patients with diabetes: observational study. J Med Internet Res. 2018. https://doi.org/10.2196/12460.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amor Khachemoune, MD, FAAD, FACMS, had the idea for the article. Paola C. Aldana, BS, performed the literature search and data analysis. Paola C. Aldana, BS, drafted the work. Amor Khachemoune, MD, FAAD, FACMS, revised the work.

Corresponding author

Correspondence to Amor Khachemoune.

Ethics declarations

Funding

No funding was received.

Conflict of interest

Paola C. Aldana, BS, and Amor Khachemoune, MD, FAAD, FACMS, declare that they have no potential conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldana, P.C., Khachemoune, A. Diabetic Foot Ulcers: Appraising Standard of Care and Reviewing New Trends in Management. Am J Clin Dermatol 21, 255–264 (2020). https://doi.org/10.1007/s40257-019-00495-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-019-00495-x

Navigation