Skip to main content
Log in

Electroreduction of tungsten oxide(VI) in molten salts with added metaphosphate

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Tungstate ions WO4 2− are not electrochemically active in chloride melts. Upon introduction of PO3 ions into the melt, two waves appear in the voltammograms at potentials −0.1— −0.2 V and −0.3— −0.5 V vs. Pb/Pb2+ reference electrode. With a PO3 concentration ratio of 0.01<[PO3 ]/[WO4 2−]<0.18, the potentiostatic electrolysis product of WO4 2− at the above mentioned potentials is metallic tungsten; a NaPO3 concentration increase for ratios [PO3 ]/[WO4 2−]≫ 0.18 results in tungsten phosphide in electrolysis product. Cyclic voltammograms and dependence of half-peak potentials on electrode polarization rate indicate the irreversible character of the electrode process. Electrode process modeling allows us to state that the first wave in the voltammogram of KCl-NaCl-Na2WO4-NaPO3 system corresponds to tungsten oxychlorides discharge while the second wave appears due to the discharge of ditungstate ions. In the voltammograms of Na2WO4-NaPO3 melts, reduction wave was observed at −1.1- −1.2 V potentials. Proportionality of limiting current to NaPO3 concentration, constancy of I d/v 1/2 ratio, and I d/nFc constant kinetic value equal to (8.3−9.5)×10−5 cm/s for steady-state wave indicate that electrode process rate is limited by electrochemically active particle diffusion to the electrode. Nascent ditungstate ions become electrochemically active in the overall electrode process. Charge transfer stage is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraboshkin A. N., Electrocrystallisation of Metals from Molten Salts, Nauka, Moscow, 1976

    Google Scholar 

  2. Antonov S. P., Ivanovskii L. E., Potenev O. S., Zashch. Met., 1973, 9, 567

    CAS  Google Scholar 

  3. Malyshev V. V., Novoselova I. A., Shapoval V. I., Zh. Prikl. Khim., 1996, 69, 1233

    CAS  Google Scholar 

  4. Makhasoev M. V., Alekseev E. P., Lutsyk V. I., State Diagrams of Molybdate and Tungstate Systems, Nauka, Novosibirsk, 1978

    Google Scholar 

  5. Malyshev V. V., Finadorin A. E., Shapoval V. I., Ukr. Khim. Zh., 1997, 63, 10

    CAS  Google Scholar 

  6. Drobysheva T. I., Bogodukhova I. A., Rabkina I. G., Izv. Akad. Nauk SSSR, Neorg. Mater, 1975, 26, 1036

    Google Scholar 

  7. Kushkhov Kh. B., Malyshev V. V., Shapoval V. I., Zashch. Met., 1990, 26, 1019

    CAS  Google Scholar 

  8. Malyshev V. V., Uskova N. N., Sarychev S. Y., Shapoval V. I., Zashch. Met., 1996, 32, 653

    Google Scholar 

  9. Baraboshkin A. N., Shunailov A. F., Martynov V. A., Martem’yanova Z. S., Tr. Inst. Elektrokhim. Ural. Fil. Akad. Nauk SSSR, 1970, 15, 67

    Google Scholar 

  10. Baraboshkin A. N., Tarasova K. P., Naznrov V. A., Martem’yanova Z. S., Tr. Inst. Elektrokhim. Ural. Fil. Akad. Nauk SSSR, 1973, 19, 44

    Google Scholar 

  11. Baraboshkin A. N., Valeev Z. I., Talanova M. I., Martem’yanova Z. S., Tr. Inst. Elektrokhim. Ural. Fil. Akad. Nauk SSSR, 1976, 23, 52

    Google Scholar 

  12. Kudryavtsev N. T., Applied Electrochemistry, Khimiya, Moscow, 1975

    Google Scholar 

  13. Malyshev V. V., Gab A., Popescu A. M., Constantin V., Rev. Roum. Chim., 2009, 54, 295

    Google Scholar 

  14. Koichiro K., Zasuhico H., Shinichiro O., Trans. Jap. Inst. Metals, 1984, 25, 265

    Google Scholar 

  15. Malyshev V. V., Kushkhov Kh. B., Russ. J. General Chem., 2004, 74, 1139

    Article  CAS  Google Scholar 

  16. Shapoval V. I., Baraboshkin A. N., Kushkhov Kh. B., Malyshev V. V., Elektrokhimiya, 1987, 23, 942

    CAS  Google Scholar 

  17. Nicholson R. S., Shain J., Anal. Chem., 1964, 36, 706

    Article  CAS  Google Scholar 

  18. Lopatin B. A., Theoretical Foundations of Electrochemical Methods for Analysis, Vysshaya Shkola, Moscow, 1975

    Google Scholar 

  19. Hammes G., Investigation of Rates and Mechanisms of Reactions, Wiley, New York, 1974

    Google Scholar 

  20. Malyshev V. V., Russian Metallurgy(Metally), 2005, 6, 511

    Google Scholar 

  21. Xu Q. F., Chen J. X., Liu Q., Ji S. J., Lang J. P., Shen Q., Chem. J. Chinese Universities, 2002, 23(9), 1641

    CAS  Google Scholar 

  22. Li Y., Lu J., Xu J. Q., Cui X. B., Sun Y. H., Li K. C., Yang Q. X., Pan L. Y., Bie H. Y., Chem. Res. Chinese Universities, 2004, 20(6), 681

    CAS  Google Scholar 

  23. Novoselova I. A., Malyshev V. V., Finadorin A. E., Shapoval V. L., Zh. Neorg. Khim., 1995, 40, 1438

    CAS  Google Scholar 

  24. Malyshev V. V., Shapoval V. I., Ukr. Khim. Zh., 1997, 63, 115

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malyshev, V., Gab, A., Popescu, AM. et al. Electroreduction of tungsten oxide(VI) in molten salts with added metaphosphate. Chem. Res. Chin. Univ. 29, 771–775 (2013). https://doi.org/10.1007/s40242-013-3003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3003-0

Keywords

Navigation