Skip to main content

Advertisement

Log in

Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment

  • Original Research
  • Published:
Progress in Biomaterials Aims and scope Submit manuscript

Abstract

Titanium and its alloys are considered as appropriate replacements for the irreparable bone. Calcium phosphate coatings are widely used to improve the osteoinduction and osseointegration ability of titanium alloys. To further improve the performance of the calcium phosphate-coated implants, strontium (Sr) was introduced to partially replace the calcium ions. In this study, the effect of Sr ion addition on the fluorohydroxyapatite (FHA)-coated Ti6Al4V alloy was investigated and all the coatings were treated under hydrothermal condition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phases and microstructures, respectively. Shear tests were done to evaluate the bond strength of the coating layer. MTT, adhesion, and alkaline phosphatase tests were performed to evaluate the biocompatibility and osteogenic behavior of the samples. Results showed that the average crystallite size for the strontium-doped FHA samples was 48 nm and the bond strength had increased 13.15% in comparison with FHA-coated samples. Analysis of variance showed p value for all MTT tests at more than 0.322 and there was not any evidence of cell death after 7 days. The results of the ALP test showed that the increase of the cell activity in Sr samples from day 7 to 14 is three times higher than the FHA ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data and materials have been properly presented in the main manuscript.

Abbreviations

FHA:

Fluorohydroxyapatite

FHA–Sr:

Fluorohydroxyapatite/strontium

FA:

Fluorapatite

Sr:

Strontium

MAA:

Micro-arc anodizing

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

References

  • Ali A, Iqbal F, Ahmad A, Ikram F, Nawaz A, Chaudhry AA et al (2019) Hydrothermal deposition of high strength calcium phosphate coatings on magnesium alloy for biomedical applications. Surf Coat Technol 357:716–727

    Article  CAS  Google Scholar 

  • Arcos D, Vallet-Regi M (2020) Substituted hydroxyapatite coatings of bone implants. J Mater Chem B 8(9):1781–1800

    Article  CAS  Google Scholar 

  • Avci M, Yilmaz B, Tezcaner A, Evis Z (2017) Strontium doped hydroxyapatite biomimetic coatings on Ti6Al4V plates. Ceram Int 43(12):9431–9436

    Article  CAS  Google Scholar 

  • Batra P, Gaba R, Issar U, Kakkar R (2013) Structures and stabilities of alkaline earth metal oxide nanoclusters: a DFT study. J Theor Chem. https://doi.org/10.1155/2013/720794

    Article  Google Scholar 

  • Bennett BT, Beck JP, Papangkorn K, Colombo JS, Bachus KN, Agarwal J, Shieh JF, Jeyapalina S (2019) Characterization and evaluation of fluoridated apatites for the development of infection-free percutaneous devices. Mater Sci Eng C Mater Biol Appl 100:665–675

    Article  CAS  Google Scholar 

  • Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360(3):1009–1016

    Article  CAS  Google Scholar 

  • Boyd AR, Rutledge L, Randolph L, Meenan BJ (2015) Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater Sci Eng 46:290–300

    Article  CAS  Google Scholar 

  • Bucur AI, Linul E, Taranu BO (2020) Hydroxyapatite coatings on Ti substrates by simultaneous precipitation and electrodeposition. Appl Surf Sci 527:146820

    Article  CAS  Google Scholar 

  • Cacciotti I (2019) Multisubstituted hydroxyapatite powders and coatings: the influence of the codoping on the hydroxyapatite performances. Int J Appl Ceram Technol 16(5):1864–1884

    Article  CAS  Google Scholar 

  • Cao L, Ullah I, Li N, Niu S, Sun R, Xia D et al (2019) Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants. J Mater Sci Technol 35(5):719–726

    Article  Google Scholar 

  • Catauro M, Papale F, Sapioand L, Naviglio S (2016) Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing. Mater Sci Eng C Mater Biol Appl 65:188–193

    Article  CAS  Google Scholar 

  • Chen Y-J, Pao J-L, Chen CS, Chen Y-C, Chang C-C, Hung F-M, Chang C-H (2017) Evaluation of new biphasic calcium phosphate bone substitute: rabbit femur defect model and preliminary clinical results. J Med Bio Eng 37(1):85–93

    Article  Google Scholar 

  • Ehret C, Aid-Launais R, Sagardoy T, Siadous R, Bareille R, Rey S, Pechev S, Etienne L, Kalisky J, de Mones E, Letourneur D, Amedee Vilamitjana J (2017) Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLoS ONE 12(9):e0184663

    Article  CAS  Google Scholar 

  • Engstrand J, Unosson E, Engqvist H (2012) Hydroxyapatite formation on a novel dental cement in human saliva. Int Schol Res Notices. https://doi.org/10.5402/2012/624056

    Article  Google Scholar 

  • Ergün Y, Başpınar MS (2017) Effect of acid passivation and H2 sputtering pretreatments on the adhesive strength of sol–gel derived Hydroxyapatite coating on titanium surface. Int J Hydrol Energy 42(32):20420–20429

    Article  CAS  Google Scholar 

  • Feroz S, Khan AS (2020) Fluoride-substituted hydroxyapatite. Woodhead Publ Ser Biomater. https://doi.org/10.1016/B978-0-08-102834-6.00007-0

    Article  Google Scholar 

  • Gallo, R (2011) Synthesis and characterization of substituted apatites for biomedical applications. PhD, University of OF PADUA

  • Gopi D, Ramya S, Rajeswari D, Surendiran M, Kavitha L (2014) Development of strontium and magnesium substituted porous hydroxyapatite/poly (3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells. Colloid Surf B 114:234–240

    Article  CAS  Google Scholar 

  • Graziani G, Bianchi M, Sassoni E, Russo A, Marcacci M (2017) Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: a review. Mater Sci Eng C Mater Biol Appl 74:219–229

    Article  CAS  Google Scholar 

  • Graziani G, Boi M, Bianchi M (2018) A review on ionic substitutions in hydroxyapatite thin films: towards complete biomimetism. Coatings 8(8):269–285

    Article  CAS  Google Scholar 

  • Gulati K, Moon HJ, Kumar PTS, Han P, Ivanovski S (2020) Anodized anisotropic titanium surfaces for enhanced guidance of gingival fibroblasts. Mater Sci Eng C Mater Biol Appl 112:110860

    Article  CAS  Google Scholar 

  • Guo X, Gao H, Liu X, Diao J, Shi X, Zhao N, Wang Y (2017) Porous Li-containing biphasic calcium phosphate scaffolds fabricated by three-dimensional plotting for bone repair. RSC Adv 7(55):34508–34516

    Article  CAS  Google Scholar 

  • Hu D, Li K, Xie Y, Pan H, Zhao J, Huang L, Zheng X (2017) The combined effects of nanotopography and Sr ion for enhanced osteogenic activity of bone marrow mesenchymal stem cells (BMSCs). J Biomat Appl 31(8):1135–1147

    Article  CAS  Google Scholar 

  • Huang CH, Yoshimura M (2020) Direct ceramic coating of calcium phosphate doped with strontium via reactive growing integration layer method on α-Ti alloy. Sci Rep 10(1):10602

    Article  CAS  Google Scholar 

  • Huang Y, Zhang X, Zhang H, Qiao H, Zhang X, Jia T, Han S, Gao Y, Xiao H, Yang H (2017) Fabrication of silver-and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceramic Int 43(1):992–1007

    Article  CAS  Google Scholar 

  • Jaafar A, Hecker C, Arki P, Joseph Y (2020) Sol–gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering 7(4):127

    Article  CAS  Google Scholar 

  • Jansen JA, Leon B (2009) Thin calcium phosphate coatings for medical implants. Springer, New York, p 390

    Google Scholar 

  • Kabir H, Gupta AK, Tripathy S (2020) Fluoride and human health: systematic appraisal of sources, exposures, metabolism, and toxicity. Crit Rev Environ Sci Technol 50(11):1116–1193

    Article  CAS  Google Scholar 

  • Kanis JA, Johansson H, Oden A, McCloskey EV (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX®. Osteoporos Int 22(8):2347–2355

    Article  CAS  Google Scholar 

  • Kavitha RJ, Ravichandran K, Narayanan TS (2018) Deposition of strontium phosphate coatings on magnesium by hydrothermal treatment: characteristics, corrosion resistance and bioactivity. J Alloys Compd 745:725–743

    Article  CAS  Google Scholar 

  • Kim H, Kim S, Kim M, Lee E, Oh H, Oh W, Park S, Kim W, Lee G, Choi N (2005) Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res Part A 74(3):366–373

    Article  CAS  Google Scholar 

  • Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y (2017) Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 72:134–142

    Article  CAS  Google Scholar 

  • Li J (2010) Structural characterisation of apatite-like materials. University of Birmingham, Birmingham

    Google Scholar 

  • Li L-Y, Cui L-Y, Liu B, Zeng R-C, Chen X-B, Li S-Q, Wang Z-L, Han E-H (2019) Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Appl Surf Sci 465:1066–1077

    Article  CAS  Google Scholar 

  • Li R, Ying B, Wei Y, Xing H, Qin Y, Li D (2020) Comparative evaluation of Sr-incorporated calcium phosphate and calcium silicate as bioactive osteogenesis coating orthopedics applications. Colloids Surf A 600:124834

    Article  CAS  Google Scholar 

  • Liu D-M, Troczynski T, Tseng WJ (2001) Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 22(13):1721–1730

    Article  CAS  Google Scholar 

  • Liu YC, Lin GS, Lee YT, Huang TC, Chang TW, Chen YW, Tung KL (2020) Microstructures and cell reaction of porous hydroxyapatite coatings on titanium discs using a novel vapour-induced pore-forming atmospheric plasma spraying. Surf Coat Technol 393:125837

    Article  CAS  Google Scholar 

  • Lu RJ, Wang X, He HX, LingLi LEY, Zhang GL, Li CJ, Ning CY, Liu HC (2019) Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. J Mater Sci Mater Med 30(10):111

    Article  CAS  Google Scholar 

  • Makarova S, Bulina N, Chaikina M, Prosanov LY, Khusnutdinov VR (2020) Mechanochemical synthesis of carbonate-and fluoride-substituted hydroxyapatite. Chem Sustain Dev 28(1):49–54

    Google Scholar 

  • Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B (2017) The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater 61:217–232

    Article  CAS  Google Scholar 

  • Moghanian A, Firoozi S, Tahriri M, Sedghi A (2018) A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. Mater Sci Eng C Mater Biol Appl 91:349–360

    Article  CAS  Google Scholar 

  • Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: a review paper. Int J Adhes Adhes 48:238–257

    Article  CAS  Google Scholar 

  • Nguyen V, Cheng T, Fang T, Li M (2020) The fabrication and characteristics of hydroxyapatite film grown on titanium alloy Ti-6Al-4V by anodic treatment. J Mater Res Technol 9(3):4817–4825

    Article  CAS  Google Scholar 

  • O’donnell M, Fredholm Y, De Rouffignac A, Hill R (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4(5):1455–1464

    Article  CAS  Google Scholar 

  • Oryan A, Baghaban Eslaminejad M, Kamali A, Hosseini S, Sayahpour FA, Baharvand H (2019) Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J Biomed Mater Res B Appl Biomater 107(1):50–64

    Article  CAS  Google Scholar 

  • Pal A, Nasker P, Paul S, Chowdhury AR, Sinha A, Das M (2019) Strontium doped hydroxyapatite from Mercenaria clam shells: synthesis, mechanical and bioactivity study. J Mech Beh Biomed Mat 90:328–336

    Article  CAS  Google Scholar 

  • Qadir MM (2020) Nanostructured surface modification for enhanced biocompatibility of Ti-based implant materials. phd, RMIT University

  • Renaudin G, Jallot E, Nedelec J-M (2009) Effect of strontium substitution on the composition and microstructure of sol–gel derived calcium phosphates. J Sol–gel Sci Technol 51(3):287–294

    Article  CAS  Google Scholar 

  • Rezaee T, Bouxsein ML, Karim L (2020) Increasing fluoride content deteriorates rat bone mechanical properties. Bone 136:115369

    Article  CAS  Google Scholar 

  • Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 28(3):51

    Article  CAS  Google Scholar 

  • Salehi A, Mashhadi HA, Abravi M, Jafarian H (2015) An ultrasound-assisted method on the formation of nanocrystalline fluorohydroxyapatite coatings on titanium scaffold by dip coating process. Procedia Mater Sci 11:137–141

    Article  CAS  Google Scholar 

  • Sanyal V, Raja CR (2017) Influence of sol–gel derived strontium–cerium co-substitution in fluorohydroxyapatite and its in-vitro bioactivity. J Sol-Gel Sci Technol 83(3):596–608

    Article  CAS  Google Scholar 

  • Sedelnikova MB, Komarova EG, Sharkeev YP, Ugodchikova AV, Tolkacheva TV, Rau JV, Buyko EE, Ivanov VV, Sheikin VV (2019) Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating. Bioact Mater 4:224–235

    Article  Google Scholar 

  • Shokri AZ, Mahjoub A and Ghammamy S (2014) Synthesis, characterization, of fluorohydroxyapatite nanopowders by sol–gel processing 291–296

  • Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D (2019) Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 4:196–206

    Article  Google Scholar 

  • Suchanek K, Bartkowiak A, Gdowik A, Perzanowski M, Kac S, Szaraniec B, Suchanek M, Marszalek M (2015) Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Mater Sci Eng C 51:57–63

    Article  CAS  Google Scholar 

  • Surmenev RA, Surmeneva MA (2019) A critical review of decades of research on calcium phosphate–based coatings: How far are we from their widespread clinical application? Cur Opin Biomed Eng 10:35–44

    Article  Google Scholar 

  • Suwanprateeb J, Suvannapruk W, Chokevivat W, Kiertkrittikhoon S, Jaruwangsanti N, Tienboon P (2018) Bioactivity of a sol–gel-derived hydroxyapatite coating on titanium implants in vitro and in vivo. Asia Biomed 12(1):35–44

    Article  CAS  Google Scholar 

  • Tadier S, Bareille R, Siadous R, Marsan O, Charvillat C, Cazalbou S, Amédée J, Rey C, Combes C (2012) Strontium-loaded mineral bone cements as sustained release systems: compositions, release properties, and effects on human osteoprogenitor cells. J Biomed Mat Res Part B 100(2):378–390

    Article  CAS  Google Scholar 

  • Tang XL, Xiao XF, Liu RF (2005) Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mat Lett 59(29–30):3841–3846

    Article  CAS  Google Scholar 

  • Tredwin CJ (2009) Sol–gel derived hydroxyapatite, fluorhydroxyapatite and fluorapatitecoatings for titanium implants. UCL (University College London), London

    Google Scholar 

  • Verma R (2020) Titanium based biomaterial for bone implants: a mini review. Mater Today 26:3148–3151

    CAS  Google Scholar 

  • Wang X, Li Y, Lin J, Hodgson PD (2008) Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate. Dent Mater 24(11):1549–1555

    Article  CAS  Google Scholar 

  • Wang T, Yang G, Zhou W, Hu J, Jia W, Lu W (2019) One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy. J Alloys Compd 799:71–82

    Article  CAS  Google Scholar 

  • Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002

    Article  CAS  Google Scholar 

  • Wolf-Brandstetter C, Beutner R, Hess R, Bierbaum S, Wagner K, Scharnweber D, Gbureck U, Moseke C (2020) Multifunctional calcium phosphate based coatings on titanium implants with integrated trace elements. Biomed Mater 15(2):025006

    Article  CAS  Google Scholar 

  • Xia W, Lindahl C, Lausmaa J, Borchardt P, Ballo A, Thomsen P, Engqvist H (2010) Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater 6(4):1591–1600

    Article  CAS  Google Scholar 

  • Xia L, Xie Y, Fang B, Wang X, Lin K (2018) In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants. Chem Eng J 347:711–720

    Article  CAS  Google Scholar 

  • Xie H, Gu Z, He Y, Xu J, Xu C, Li L, Ye Q (2018) Microenvironment construction of strontium–calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. J Mater Chem B 6(15):2332–2339

    Article  CAS  Google Scholar 

  • Xing H, Li R, Wei Y, Ying B, Li D, Qin Y (2020) Improved osteogenesis of selective-laser-melted titanium alloy by coating strontium-doped phosphate with high-efficiency air-plasma treatment. Front Bioeng Biotechnol 8:367

    Article  Google Scholar 

  • Xiong J, Li Y, Hodgson PD (2010) Nanohydroxyapatite coating on a titanium–niobium alloy by a hydrothermal process. Acta Biomater 6(4):1584–1590

    Article  CAS  Google Scholar 

  • Yao Q, Jiang Y, Tan S, Fu X, Li B, Liu L (2020) Composition and bioactivity of calcium phosphate coatings on anodic oxide nanotubes formed on pure Ti and Ti-6Al-4V alloy substrates. Mater Sci Eng C Mater Biol Appl 110:110687

    Article  CAS  Google Scholar 

  • Yuan N, Jia L, Geng Z, Wang R, Li Z, Yang X, Cui Z, Zhu S, Liang Y, Liu Y (2017) The incorporation of strontium in a sodium alginate coating on titanium surfaces for improved biological properties. Biomed Res Int. https://doi.org/10.1155/2017/9867819

    Article  Google Scholar 

  • Zhang L, Li H, Li K, Zhang Y, Liu S, Guo Q, Li S (2016) Micro-oxidation treatment to improve bonding strength of Sr and Na co-substituted hydroxyapatite coatings for carbon/carbon composites. Appl Surf Sci 378:136–141 (ce)

    Article  CAS  Google Scholar 

  • Zhang C, Zhang J, Zhang S, Wang Z (2018) Comparison of calcium phosphate coatings on AZ31 and fluoride-treated AZ31 alloy prepared by hydrothermal method and their electrochemical corrosion behaviour. Mater Chem Phys 220:395–401

    Article  CAS  Google Scholar 

  • Zheng B, Luo Y, Liao H, Zhang C (2017) Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings. J Eur Ceram Soc 37(15):5017–5021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the materials research group of the Iranian Academic Center for Education, Culture, and Research (ACECR) for the financial and scientific support of this research.

Funding

This work was supported by ACECR Mashhad branch, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Salehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The proposed study complies with all the ethical guidelines.

Consent for publication

All the authors have agreed to publish the data in your esteemed Journal.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moloodi, A., Toraby, H., Kahrobaee, S. et al. Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment. Prog Biomater 10, 185–194 (2021). https://doi.org/10.1007/s40204-021-00162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40204-021-00162-7

Keywords

Navigation