Skip to main content
Log in

Cytotoxicological evaluation of copper oxide nanoparticles on green algae, bacteria and crustacean systems

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Copper oxide (CuO) nanoparticles (NPs) have been utilized in several industries including textile, consumer products, medical, automobiles etc. The discharge of industrial effluents in environment increased the probability of CuO NPs contamination in the ecosystem.

Methods

The present investigation used CuO NPs to determine the toxic effect on Lyngbya species, fresh water algae isolated from natural pond, bacterial species Pseudomonas aeruginosa and Staphylococcus aureus and a crustacean species Daphnia magna.

Results

The NPs average diameter and zeta potential was estimated to be 45 ± 3 nm and 29 ± 1.78 mV respectively. The results showed that 0.1 µg/mL CuO NPs showed the growth inhibition of 47 ± 2% on Lyngbya sp. after 5 days of incubation. The CuO NPs also showed toxic effect to bacterial systems such as P. aeruginosa and S. aureus and crustacean system D. magna. Further, there was an increased lipid peroxidation and generation of reactive oxygen species (ROS) in algal cells observed up on NPs exposure. The exposure of NPs suppressed the antioxidant defense system. The amount of glutathione was reduced after the exposure of NPs.

Conclusion

The study suggested the role of ROS in toxicity of algal and bacterial systems. The present study pointed out the potent toxicity of CuO NPs to the organisms present in the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. Chap. 1 – An introduction to nanotechnology. Interface Sci Technol. 2019;28:1–27.

    Article  CAS  Google Scholar 

  2. Samal SS, Manohara SR. Nanoscience and nanotechnology in India: A broad perspective. Mater Today Proc. 2019;10:151–8.

    Article  Google Scholar 

  3. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ. Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev. 2016;307:237–54.

    Article  CAS  Google Scholar 

  4. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.

    Article  CAS  Google Scholar 

  5. Jagadish K, Shiralgi Y, Chandrashekar BN, Dhananjaya BL, Srikantasamy S. Chap. 8 – Ecofriendly synthesis of metal/metal oxide nanoparticles and their application in food packaging and food preservation. Impact of Nanoscience in Food Industry; 2018. pp. 197–216.

  6. Serpone N, Dondi D. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg Chim Acta. 2007;360:794–802.

    Article  CAS  Google Scholar 

  7. Muna M, Blinova I, Kahru A, Vrček IV, Pem B, Orupõld K, Heinlaan M. Combined effects of test media and dietary algae on the toxicity of CuO and ZnO nanoparticles to freshwater microcrustaceans Daphnia magna and Heterocyprisincongruens: food for thought. Nanomaterials. 2019;9:23.

  8. Liu X, Tang J, Wang L, Giesy JP. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. Ecotoxicol Environ Saf. 2018;158:123–30.

    Article  CAS  Google Scholar 

  9. Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq. 2019;290:111197.

    Article  CAS  Google Scholar 

  10. Williams PG, Yoshida WY, Quon MK, Moore RE, Paul VJ. Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J Nat Prod. 2003;66:651–4.

    Article  CAS  Google Scholar 

  11. Joonas E, Aruoja V, Olli K, Kahru A. Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. Sci Total Environ. 2019;647:973–80.

    Article  CAS  Google Scholar 

  12. Rippka R. Isolation and purification of cyanobacteria. Methods Enzymol. 1988;167:3–27.

    Article  CAS  Google Scholar 

  13. Wu F, Bortvedt A, Harper BJ, Crandon LE, Harperac SL. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Aquat Toxicol. 2017;190:78–86.

    Article  CAS  Google Scholar 

  14. Xi X, Ying HZ, Xu CY, Qiang LX, Hua L, Chao QY. Optimazation of FDA-PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis aeruginosa. Phys Chem Earth A/B/C. 2011;36:424–9.

    Article  Google Scholar 

  15. Yu Y, Kong F, Wang M, Qian L, Shi X. Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicol Environ Saf. 2007;66:49–56.

    Article  CAS  Google Scholar 

  16. Bondarenko O, Ivask A, Käkinen A, Kahru A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut. 2012;169:81–9.

    Article  CAS  Google Scholar 

  17. Khan SS, Mukherjee A, Chandrasekaran N. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloids Surf B. 2011;87:129–38.

    Article  CAS  Google Scholar 

  18. Siddiqui H, Parra MR, Pandey P, Qureshi MS, Haque FZ. Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency, J Sci Adv Mater Devices. https://doi.org/10.1016/j.jsamd.2020.01.004.

  19. Kahru A, Dubourguier H-C. From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269:105–19.

    Article  CAS  Google Scholar 

  20. Melegari SP, Perreault F, Helena R, Costa R, Popovic R, Matias WG. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2013;142–143:431–40.

    Article  Google Scholar 

  21. Franklin NM, Adams MS, Stauber JL, Lim RP. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol. 2001;40:469–80.

    Article  CAS  Google Scholar 

  22. Stauber JL, Franklin NM, Adams MS. Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol. 2002;20:141–3.

    Article  CAS  Google Scholar 

  23. Sun T, Yan Y, Zhao Y, Guo F, Jiang C. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One. 2012;7:43442.

    Article  Google Scholar 

  24. Baek YW, Joo Y. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ. 2011;409:1603–8.

    Article  CAS  Google Scholar 

  25. Zhao J, Wang Z, Dai Y, Xing B. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res. 2013;47:4169–78.

    Article  CAS  Google Scholar 

  26. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem. 2015;86:24–33.

    Article  CAS  Google Scholar 

  27. Wahab R, Mishra A, Yun SI, Kim YS, Shin H-S. Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol. 2010;87:1917–25.

    Article  CAS  Google Scholar 

  28. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–34.

    Article  CAS  Google Scholar 

  29. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–10.

    Article  CAS  Google Scholar 

  30. Shaw BJ, Al-Bairuty G, Hand RD. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol. 2012;116:90–101.

    Article  Google Scholar 

  31. Dauda S, Chia MA, Bako SP. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat Toxicol. 2017;187:108–14.

    Article  CAS  Google Scholar 

  32. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53.

    Article  Google Scholar 

  33. Lei C, Zhang L, Yang K, Zhu L, Lin D. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut. 2016;218:505–12.

    Article  CAS  Google Scholar 

  34. Dubey G, Prasad SM. Differential display of antioxidants in mitigating adverse effects of UV-B radiation in nostoc muscorum and phormidium foveolarum photoacclimated to different irradiances. Appl Biochem Biotechnol. 2015;175:2703–28.

    Article  CAS  Google Scholar 

  35. Shaw JR, Pfrender ME, Eads BD. Daphnia as an emerging model for toxicological genomics. Adv Exp Biol. 2008;2:327–8.

    Google Scholar 

  36. Fan WH, Shi ZW, Yang XP, Cui MM, Wang XL, Zhang DF, et al. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna. Water Res. 2012;46:5981–8.

    Article  CAS  Google Scholar 

  37. Jo HJ, Choi JW, Lee SH, Hong SW. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods. J Hazard Mater. 2012;227:301–8.

    Article  Google Scholar 

  38. Wang Y, Qin S, Li Y, Wu G, Sun Y, Zhang L, Huang Y, Lyu K, Chen Y, Yang Z. Combined effects of ZnO nanoparticles and toxic Microcystis on life-history traits of Daphnia magna. Chemosphere. 2019;233:482–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors sincerely thank the management of Bannari Amman Institute of Technology, Tamil Nadu for providing the necessary facilities and financial support to carry out this research work. The authors extend their appreciation to the Researchers supporting project number (RSP-2020/190) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sudheer Khan.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janani, B., Al Farraj, D.A., Raju, L.L. et al. Cytotoxicological evaluation of copper oxide nanoparticles on green algae, bacteria and crustacean systems. J Environ Health Sci Engineer 18, 1465–1472 (2020). https://doi.org/10.1007/s40201-020-00561-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00561-1

Keywords

Navigation