Skip to main content
Log in

Analysis of genetic selection at insulin receptor substrate-2 gene loci

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Type 2 diabetes mellitus (T2DM) is highly heritable and exhibits significant variability in prevalence between different populations. Prevalence of T2DM is higher in Asian and African relative to European populations. During evolution, traditional feast-famine cycles likely led to significant natural selection impacting metabolic genes. Human adaptation to environmental changes (food supply, lifestyle, climate, and geography) likely influenced differential selection of T2DM-associated genes. Together, insulin receptor substrate-1 and -2 (IRS1 and IRS2) genes encode the major ligands of insulin and IGF1 receptors. Irs2-deficient mice exhibit a T2DM phenotype with severe insulin resistance, and a common IRS2 polymorphism is associated with T2DM. Therefore, the present study sought evidence of natural selection at IRS2 loci.

Methods

Data were sourced from the HapMap and 1000 Genomes projects, comprising four different populations with distinct ancestries: European, Yoruba, Han Chinese, and Japanese. A three-step method was applied to detect IRS2 locus selection. The long-range haplotype (LRH) test detected unusual extended haplotypes, the integrated haplotype score (iHS) detected selection, and Wright’s F-statistics (particularly Wright’s fixation index: FST) were calculated as a measure of population differentiation.

Results

The African population exhibited highly significant LRH findings (percentile >99.9, p = 0.005–0.0009), while both the European and African populations exhibited extreme positive iHS test scores ([iHS] >2.5).

Conclusion

These findings indicate that genetic selection has occurred at the IRS2 locus, warranting further research into the adaptive evolution of metabolic disorder-associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418:700–7.

    Article  CAS  Google Scholar 

  2. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.

    Article  CAS  Google Scholar 

  3. Yoshiuchi I. Evidence of selection at insulin receptor substrate-1 gene loci. Acta Diabetol. 2013;50:775–9. https://doi.org/10.1007/s00592-012-0414-1.

    Article  CAS  PubMed  Google Scholar 

  4. Yoshiuchi I. Two SNPs associated with type 2 diabetes and obesity at melanocortin-4 receptor gene loci exhibited high Fst values and natural selection. J Diabetes Metab. 2013;S11:005.

    Google Scholar 

  5. NEEL JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Hum Genet. 1962;14:353–62.

    CAS  PubMed  Google Scholar 

  6. Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, Lyssenko V, et al. Heritability and familiarity of type 2 diabetes and related quantitative traits in the Botnia study. Diabetologia. 2011;54:2811–9.

    Article  CAS  Google Scholar 

  7. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  Google Scholar 

  8. Diamond J. The double puzzle of diabetes. Nature. 2003;423:599–602.

    Article  CAS  Google Scholar 

  9. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900–4.

    Article  CAS  Google Scholar 

  10. Mammarella S, Romano F, Di Valerio A Creati B, Esposito DL, Palmirotta R, et al. Interaction between the G1057D variant of IRS-2 and overweight in the pathogenesis of type 2 diabetes. Hum Mol Genet. 2000;9:2517–21.

    Article  CAS  Google Scholar 

  11. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:446–58.

    Article  CAS  Google Scholar 

  12. Novembre J, Di Rienzo A. Spatial patterns of variation due to natural selection in humans. Nat Rev Genet. 2009;10:745–55.

    Article  CAS  Google Scholar 

  13. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  Google Scholar 

  14. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009;19:826–37.

    Article  CAS  Google Scholar 

  15. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet. 2009;10(9):639–50.

    Article  CAS  Google Scholar 

  16. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature.2015; 526: 68–74. doi:https://doi.org/10.1038/nature15393

  17. Ehrmann DA, Tang X, Yoshiuchi I, Cox NJ, Bell GI. Relationship of insulin receptor substrate-1 and -2 genotypes to phenotypic features of polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87:4297–300.

    Article  CAS  Google Scholar 

  18. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005;1:47–50.

    CAS  Google Scholar 

  19. Southam L, Soranzo N, Montgomery SB, Frayling TM, McCarthy MI, Barroso I, et al. Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants? Diabetologia. 2009;52:1846–51.

    Article  CAS  Google Scholar 

  20. Mountain JL, Risch N. Assessing genetic contributions to phenotypic differences among 'racial' and 'ethnic' groups. Nat Genet. 2004;36:S48–53.

    Article  CAS  Google Scholar 

  21. Darwin C. The origin of species by means of natural selection. London:John Murray;1859.

  22. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. Genetic structure of human populations. Science. 2002;298:2381–5. https://doi.org/10.1126/science.1078311.

    Article  CAS  PubMed  Google Scholar 

  23. McDougall I, Brown FH, Fleagle JG.Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature. 2005;433:733–736. doi: https://doi.org/10.1038/nature03258.

  24. Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E. Tracing the peopling of the world through genomics. Nature. 2017;541:302–10. https://doi.org/10.1038/nature21347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC. African populations and the evolution of human mitochondrial DNA. Science. 1991;253:1503–7. https://doi.org/10.1126/science.1840702.

    Article  CAS  PubMed  Google Scholar 

  26. Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, et al. The genetic history of ice age Europe. Nature. 2016;534:200–5. https://doi.org/10.1038/nature17993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Allentoft ME, Sikora M, Sjögren KG, Rasmussen S, Rasmussen M, Stenderup J, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–72. https://doi.org/10.1038/nature14507.

    Article  CAS  PubMed  Google Scholar 

  28. Ayub Q, Moutsianas L, Chen Y, Panoutsopoulou K, Colonna V, Pagani L, et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am J Hum Genet. 2015;94:176–85. https://doi.org/10.1016/j.ajhg.2013.12.010.

    Article  CAS  Google Scholar 

  29. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10:e1004412. https://doi.org/10.1371/journal.pgen.1004412.

    Article  CAS  PubMed  Google Scholar 

  30. Mathieson I. Human adaptation over the past 40,000 years. Curr Opin Genet. 2020;62:97–104. https://doi.org/10.1016/j.gde.2020.06.003.

    Article  CAS  Google Scholar 

  31. Chen R, Corona E, Sikora M, Dudley JT, Morgan AA, Moreno-Estrada A, et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 2012;8:e1002621. https://doi.org/10.1371/journal.pgen.1002621.

    Article  CAS  PubMed  Google Scholar 

  32. Ségurel L, Austerlitz F, Toupance B, Gautier M, Kelley JL, Pasquet P, et al. Positive selection of protective variants for type 2 diabetes from the Neolithic onward: a case study in Central Asia. Eur J Hum Genet. 2013;21:1146–51. https://doi.org/10.1038/ejhg.2012.295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, Golan D, et al. Detection of human adaptation during the past 2000 years. Science. 2016;354:760–4. https://doi.org/10.1126/science.aag0776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kyoko Yoshiuchi for secretarial contribution. We would like to thank Editage (www.editage.com) for English language editing. Dr. Issei Yoshiuchi planned this study, examined data, wrote this manuscript, thought about discussion, and edited this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Yoshiuchi.

Ethics declarations

Conflict of interests

The author declares no conflict of interest.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Ethics approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Prior Presentation

We presented parts of this project at the 57th Annual Meeting of Japan Diabetes Association, Osaka, Japan, in May 2014.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshiuchi, I. Analysis of genetic selection at insulin receptor substrate-2 gene loci. J Diabetes Metab Disord 20, 307–311 (2021). https://doi.org/10.1007/s40200-021-00745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00745-y

Keywords

Navigation