Skip to main content
Log in

Corrosion Resistance of Co-containing Maraging Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Corrosion resistance behavior of Co-containing maraging stainless steels was investigated. Neutral salt spray and polarization test showed that maraging stainless steel with high Co content showed poor corrosion behavior. Microstructure observation proved that segregation of Cr in the matrix deteriorated its corrosion resistance. The surface morphology of the aged maraging stainless steel with high Co content indicated that during passivation process, the newly formed passive film with sinusoidal distribution readily destroyed by the corrosive medium, hence, causing poor corrosion resistance. Moreover, through first-principles calculation it was proved that Co increased Fe–Fe ferromagnetic interaction which facilitated the formation Cr-rich clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.L. Youngblood, M. Raghavan, Metall. Mater. Trans. A 1493, 8 (1977)

    Google Scholar 

  2. R.G. Davies, Metall. Mater. Trans. A 41, 9 (1978)

    Google Scholar 

  3. M. Sarwar, R. Priestner, J. Mater. Sci. 2091, 31 (1996)

    Google Scholar 

  4. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S.van der Zwaag. Scr. Mater. 421, 56 (2007)

    Google Scholar 

  5. T.S. Byun, N. Hashumoto, K. Farrell, Acta Mater. 3889, 52 (2004)

    Google Scholar 

  6. B.A. Lasebikan, A.R. Akisanya, W.F. Deans, J. Mater. Eng. Perform. 598, 22 (2013)

    Google Scholar 

  7. C.G. Schmidt, C.M. Young, B. Walser, R.H. Klundt, O. Sherby, Metall. Mater. Trans. A 447, 13 (1982)

    Google Scholar 

  8. Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 58, 97 (2015)

    Google Scholar 

  9. Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 142, 20 (2017)

    Google Scholar 

  10. S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 460, 544 (2017)

    Google Scholar 

  11. K. Liu, Y.Y. Shan, Z.Y. Yang, J.X. Liang, L. Lu, K. Yang, J. Mater. Sci. Technol. 769, 22 (2006)

    Google Scholar 

  12. W. Xu, P.E.J. Rivera-Díaz-del-Castillo, W. Yan, K. Yang, D.S. Martín, L.A.I. Kestens, S. van der Zwaag, Acta Mater. 4067, 58 (2010)

    Google Scholar 

  13. J.W. Martin, T. Kosa, U.S. Patent 6, 630, 103, B2, 2003

  14. C. Kuehmann, B. Tufts, P. Trester, Adv. Mater. Process. 37, (2008)

  15. S. Ifergane, E. Sabatani, B. Carmeli, Z. Barkay, V. Ezersky, O. Beeri, N. Eliaz, Electrochim. Acta 494, 178 (2015)

    Google Scholar 

  16. M. Hättestrand, J.O. Nilsson, K. Stiller, P. Liu, M. Andersson, Acta Mater. 1023, 52 (2004)

    Google Scholar 

  17. Z. Guo, W. Sha, D. Vaumousse, Acta Mater. 101, 51 (2003)

    Google Scholar 

  18. C. Hsiao, C. Chiou, J. Yang, Mater. Chem. Phys. 134, 74 (2002)

    Google Scholar 

  19. H.R. Habibi, Bajguirani. Mater. Sci. Eng. A 142, 338 (2002)

    Google Scholar 

  20. M. Gholami, M. Hoseinpoor, M.H. Moayed, Corros. Sci. 156, 94 (2015)

    Google Scholar 

  21. F. Iacoviello, F. Casari, S. Gialanella, Corros. Sci. 909, 47 (2005)

    Google Scholar 

  22. J. Galvele, J. Lumsden, R. Staehle, J. Electrochem. Soc. 1204, 125 (1978)

    Google Scholar 

  23. L. Garfias-Mesias, J. Sykes, C. Tuck, Corros. Sci. 1319, 38 (1996)

    Google Scholar 

  24. J. Jiang, D.K. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J.L. Zhao, X.M. Fan, C.G. Yang, T.Y. Gu, K. Yang, Corros. Sci. 46, 113 (2016)

    Google Scholar 

  25. P. Manning, Corrosion 468, 36 (1980)

    Google Scholar 

  26. H.P. Jin, J.K. Kim, B.H. Lee, S.K. Sang, K.Y. Kim, Scr. Mater. 237, 68 (2013)

    Google Scholar 

  27. K. Asami, B.P. Zhang, M. Mehmood, H. Habazaki, K. Hashimoto, Scr. Mater. 1655, 44 (2001)

    Google Scholar 

  28. L. Couturier, F.D. Geuser, M. Descoins, A. Deschamps, Mater. Des. 416, 107 (2016)

    Google Scholar 

  29. Y.C. Li, W. Yan, J.D. Cotton, G.J. Ryan, Y.F. Shen, W. Wang, Y.Y. Shan, K. Yang, Mater. Des. 56, 82 (2015)

    Article  Google Scholar 

  30. T.J. Godfrey, M.G. Hetherrington, J.M. Sassen, G.D.W. Smith, J. De Phys. 421, C6 (1988)

    Google Scholar 

  31. M.J. Graham, J.A. Bardwell, G.I. Sproule, D.F. Mitchell, B.R. Macdougall, Corros. Sci. 13, 35 (1993)

    Google Scholar 

  32. T. Shibata, Corros. Sci. 20, 49 (2007)

    Google Scholar 

  33. Z.S. Smialowska, Corros. Sci. 1143, 44 (2002)

    Google Scholar 

  34. A. Alamr, D.F. Bahr, M. Jacroux, Corros. Sci. 925, 48 (2006)

    Google Scholar 

  35. L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface Evolution, 1st edn. (Cambridge University, Cambridge, 2003)

    Google Scholar 

  36. W.M. Haynes, Handbook of Chemistry and Physics, 97th edn. (CRC, Boca Raton, 2016)

    Google Scholar 

  37. W.K. Kelly, R.N. Iyer, H.W. Pickering, J. Elecrrochem. Soc. 3134, 140 (1993)

    Google Scholar 

  38. A. Sehgal, B.G. Ateya, H.W. Pickering, Acta Mater. 3389, 45 (1997)

    Google Scholar 

  39. H. Kaneko, M. Homma, K. Nakamura, I.E.E.E. Trans, Magn. 1325, 13 (1977)

    Google Scholar 

  40. D. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, K. Hono, Mater. Sci. Eng., A 285, 394 (2005)

    Google Scholar 

  41. M. Thuvander, M. Andersson, K. Stiller, Mater. Sci. Technol. 695, 28 (2012)

    Google Scholar 

  42. F. Danoix, J. Lacaze, A. Gibert, D. Mangelinck, K. Hoummada, E. Andrieu, Ultramicroscopy 193, 132 (2013)

    Google Scholar 

  43. J.L. Tian, W. Wang, L.C. Yin, W. Yan, Y.Y. Shan, K. Yang, Scr. Mater. 37, 121 (2016)

    Google Scholar 

  44. P.A. Korzhavyi, A.V. Ruban, J. Odqvist, J.O. Nilsson, B. Johansson, Phys. Rev. B 7715, 79 (2009)

    Google Scholar 

  45. A.V. Ruban, P.A. Korzhavyi, B. Johansson, Phys. Rev. B 094436, 77 (2008)

    Google Scholar 

  46. O.I. Gorbatov, P.A. Korzhavyi, A.V. Ruban, B. Johansson, Y.N. Gornostyrev, J. Nucl. Mater. 248, 419 (2011)

    Google Scholar 

  47. A.V. Ruban, V.I. Razumovskiy, Phys. Rev. B 3531, 86 (2012)

    Google Scholar 

  48. D.N. Manh, M.Y. Lavrentiev, S.L. Dudarev, J. Comput. Aid. Des. 159, 14 (2007)

    Google Scholar 

Download references

Acknowledgements

This research is sponsored by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2017233) and the Innovation Project of Institute of Metal Research (No. 2015-ZD04). We acknowledge Dr. Wenqing Liu for APT experiment support and relevant discussion on the data analysis. We also acknowledge Dr. Lichang Yin for first-principles calculation and meaningful suggestion on the Co functional mechanism research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JL., Wang, W., Shahzad, M.B. et al. Corrosion Resistance of Co-containing Maraging Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 31, 785–797 (2018). https://doi.org/10.1007/s40195-018-0758-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0758-9

Keywords

Navigation