Skip to main content
Log in

Effect of Cobalt on the Microstructure and Corrosion Behavior of Martensitic Age-Hardened Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To evaluate the influence of cobalt on the microstructure and pitting behavior of martensitic age-hardened stainless steel (MASS), the microstructures and electrochemical behaviors were characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, potentiodynamic curve, electrochemical impedance spectroscopy, and Mott–Schottky analysis. Results indicated that adding cobalt reduced the grain size of the original austenite, refined the lath martensite, inhibited the precipitation of Cu-rich phases, and increased the content of reversed austenite. Compared with the cobalt-free steel, the cobalt-containing steel has a higher pitting potential, lower corrosion current density, and higher pitting resistance. The primary components of the passive film grown on the cobalt-free steel included (Cr, Fe) oxides, such as Cr2O3, Cr(OH)3, FeOOH, and Fe2O3. The cobalt-containing steel included the aforementioned components as well as Co, which was attributed to the formation of the passive film in the forms of CoFe2O4, Co(OH)2, and CoO. In addition, the synergy of the refined lath martensite and the precipitation of the Cu-rich phase induced an increase in corrosion resistance in MASS containing cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Dalmau, C. Richard, and A.I.- Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribo Corrosion Appraisal, Tribol. Int., 2018, 121, p 167–179

    Article  CAS  Google Scholar 

  2. S.B. Nizhnik, V.M. Pelepelin, G.I. Usikova, and N.I. Chernyak, Mechanical Properties and Structure of Stainless Maraging Steel in the Strengthened Condition, Strength Mater+, 1970, 2(12), p 1256–1259

    Article  Google Scholar 

  3. J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scripta Mater., 2015, 104, p 87–90

    Article  CAS  Google Scholar 

  4. Y. Tomita, Development of Fracture Toughness of Ultrahigh Strength Low Alloy Steels for Aircraft and Aerospace Applications, Mater. Sci. Technol., 1991, 7(6), p 481–489

    Article  CAS  Google Scholar 

  5. Y.Q. Sun, Z.Y. Yang, J.X. Liang, and W.S. Song, Progress and Prospect of High Strength Stainless Steel for Civil Airplanes in China, J. Iron Steel Res., 2009, 21(6), p 1–5

    CAS  Google Scholar 

  6. J.L. Tian, M.B. Shahzad, W. Wang, L.C. Yin, Z.H. Jiang, and K. Yang, Role of Co in Formation of Ni-Ti Clusters in Maraging Stainless Steel, J. Mater. Sci. Technol., 2018, https://doi.org/10.1016/j.jmst.2018.04.020

    Article  Google Scholar 

  7. Y.C. Li, W. Yan, J.D. Cotton et al., A New 1.9 GPa Maraging Stainless Steel Strengthened by Multiple Precipitating Species, Mater. Des., 2015, 82, p 56–63

    Article  CAS  Google Scholar 

  8. C.V.S. Murthy, A.G. Krishna, and G.M. Reddy, Microstructure and Mechanical Properties of Similar and Dissimilar Metal Gas Tungsten Constricted Arc Welds: Maraging Steel to 13-8 Mo Stainless Steel, Defence Technology, 2018, https://doi.org/10.1016/j.dt.2018.04.005

    Article  Google Scholar 

  9. G.R. Speich, D.S. Dabkowski, and L.F. Porter, Strength and Toughness of Fe-10Ni Alloys Containing C, Cr, Mo, and Co, Metall. Mater. Trans. B, 1973, 4(1), p 303–315

    Article  CAS  Google Scholar 

  10. M.D. Perkas, P.L. Gruzin, A.F. Edneral et al., Effect of Cobalt on Aging of Martensite in Fe–Ni–Mo Alloys, Metal. Sci. Heat Treat, 1972, 14(10), p 837–843

    Article  Google Scholar 

  11. A.J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, CRC Press, New York, 1985

    Google Scholar 

  12. S. Sunda, K. Majima, Y. Akasofu, and Y. Kaneko, Corrosion Assessment of Nd-Fe-B Alloy with Co Addition Through Impedance Measurements, J. Alloys Compd., 2006, 408, p 1373–1376

    Article  CAS  Google Scholar 

  13. K.H. Kim, S.H. Lee, N.D. Nam, and J.G. Kim, Effect of Cobalt on the Corrosion Resistance of Low Alloy Steel in Sulfuric Acid Solution, Corros. Sci., 2011, 53(11), p 3576–3587

    Article  CAS  Google Scholar 

  14. Y.P. Li, X.R. Fan, N. Tang, H.K. Bian et al., Effects of Partially Substituting Cobalt for Nickel on the Corrosion Resistance of a Ni-16Cr-15Mo Alloy to Aqueous Hydrofluoric Acid, Corros. Sci., 2014, 78(1), p 101–110

    CAS  Google Scholar 

  15. M.M. Tilman, Effects of Substituting Cobalt for Nickel on the Corrosion Resistance of Two Types of Stainless Steel, Bureau of Mines RI-6591, 1962, 1, p 17.

  16. H. Geng, X. Wu, H. Wang, and Y. Min, Effects of Copper Content on the Machinability and Corrosion Resistance of Martensitic Stainless Steel, J. Mater. Sci., 2008, 43(1), p 83–87

    Article  CAS  Google Scholar 

  17. A.S. Murthy, J.E. Medvedeva, D. Isheim, S.L. Lekakh et al., Copper Precipitation in Cobalt-Alloyed Precipitation-Hardened Stainless Steel, Scripta Mater., 2012, 66(11), p 943–946

    Article  CAS  Google Scholar 

  18. H.R.H. Bajguirani, The Effect of Ageing Upon the Microstructure and Mechanical Properties of Type 15-5PH Stainless Steel, Mater. Sci. Eng. A, 2002, 338(1–2), p 142–159

    Article  Google Scholar 

  19. T. Saeid, A. Abdollah-zadeh, H. Assadi, and F. Malek Ghaini, Effect of Friction Stir Welding Speed on the Microstructure and Mechanical Properties of a Duplex Stainless Steel, Mater. Sci. Eng. A., 2008, 496, p 262–268

    Article  CAS  Google Scholar 

  20. S. Biswas and L.T. Drzal, Multilayered Nano-architecture of Variable Sized Graphene Nanosheets for Enhanced Supercapacitor Electrode Performance, ACS Appl. Mater. Inter., 2010, 2(8), p 2293–2300

    Article  CAS  Google Scholar 

  21. E. Cano, A. Crespo, D. Lafuente, and B.R. Barat, A Novel Gel Polymer Electrolyte Cell for In Situ Application of Corrosion Electrochemical Techniques, Electrochem. Commun., 2014, 41(2), p 16–19

    Article  CAS  Google Scholar 

  22. P. Gallagher, R.E. Malpas, and E.B. Shone, Corrosion of Stainless Steels in Natural, Transported, and Artificial Seawater, Br. Corros. J., 1988, 23(4), p 229

    Article  CAS  Google Scholar 

  23. B. Hirschorn, M.E. Orazem, B. Tribollet et al., Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films II. Applications, J. Electrochem Soc., 2010, 157(12), p C452–C457

    Article  CAS  Google Scholar 

  24. S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang et al., Effect of Quenching and Partitioning on the Microstructure Evolution and Electrochemical Properties of a Martensitic Stainless Steel, Corros. Sci., 2016, 103, p 95–104

    Article  Google Scholar 

  25. N.E. Hakiki, Comparative Study of Structural and Semiconducting Properties of Passive Films and Thermally Grown Oxides on AISI, 304 Stainless Steel, Corros. Sci., 2011, 53(9), p 2688–2699

    Article  CAS  Google Scholar 

  26. C. Changfeng, J. Ruijing, Q. Jinsen et al., Analysis of the Space Charge Capacitance of Bipolar Semiconductor, Passive Films (II), Acta Phys. Chim. Sin., 2009, 25(6), p 463–469

    Google Scholar 

  27. M.D.C. Belo, N.E. Hakiki, and M.G.S. Ferreira, Semiconducting Properties of Passive Films Formed on Nickel-Base Alloys Type Alloy 600: Influence of the Alloying Elements, Electrochim. Acta, 1999, 44(14), p 2473–2481

    Article  Google Scholar 

  28. L.V. Taveira, M.F. Montemor, M.D.C. Belo et al., Influence of Incorporated Mo and Nb on the Mott-Schottky Behaviour of Anodic Films Formed on AISI, 304L, Corros. Sci., 2010, 52(9), p 2813–2818

    Article  CAS  Google Scholar 

  29. S. Ningshen, U.K. Mudali, V.K. Mittal et al., Semiconducting and Passive Film Properties of Nitrogen-Containing Type 316LN Stainless Steels, Corros. Sci., 2007, 49(2), p 481–496

    Article  CAS  Google Scholar 

  30. H. Luo, C.F. Dong, X.G. Li et al., The Electrochemical Behaviour of 2205 Duplex Stainless Steel in Alkaline Solutions with Different pH in the Presence of Chloride, Electrochim. Acta, 2012, 64(1), p 211–220

    Article  CAS  Google Scholar 

  31. M. Eashwar, G. Sreedhar, A.L. Kumar et al., The Enrichment of Surface Passive Film on Stainless Steel During Biofilm Development in Coastal Seawater, Biofouling, 2015, 31(6), p 511–525

    Article  CAS  Google Scholar 

  32. A.M. Fekry and R.M. El-Sherif, Electrochemical Corrosion Behavior of Magnesium and Titanium Alloys in Simulated Body Fluid, Electrochim. Acta, 2009, 54(28), p 7280–7285

    Article  CAS  Google Scholar 

  33. C.R. Clayton and Y.C. Lu, ChemInform Abstract: A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, J. Cheminformatics, 1987, 18(14), p 2465–2473

    Google Scholar 

  34. V. Vignal, S. Ringeval, S. Thiebaut et al., Influence of the Microstructure on the Corrosion Behavior of Low-Carbon Martensitic Stainless Steel after Tempering Treatment, Corros. Sci., 2014, 85(4), p 42–51

    Article  CAS  Google Scholar 

  35. V. Kain, G.C. Palit, S.S. Choutai, and H.S. Gadiyar, Effect of Heat Treatment on the Critical Pitting Potential of SS 304 in 0.01 N NaCl, J. Electrochem. Soc. India, 1989, 12(38), p 50–54

    Google Scholar 

  36. K. Chandra, V. Kain, and R. Tewari, Microstructural and Electrochemical Characterization of Heat-Treated 347 Stainless Steel with Different Phases, Corros. Sci., 2013, 67(1), p 118–129

    Article  CAS  Google Scholar 

  37. C.J. Park, V.S. Shankar Rao, and H.S. Kwon, Effects of Sigma Phase on the Initiation and Propagation of Pitting Corrosion of Duplex Stainless Steel, Corros. Sci., 2005, 61(1), p 76–83

    Article  CAS  Google Scholar 

  38. A.D. Schino, M. Barteri, and J.M. Kenny, Effects of Grain Size on the Properties of a Low Nickel Austenitic Stainless Steel, J. Mater. Sci., 2003, 38(23), p 4725–4733

    Article  Google Scholar 

  39. Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu, Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing, Corros. Sci., 2012, 54(1), p 60–67

    Article  CAS  Google Scholar 

  40. A. Fattah-alhosseini and S. Vafaeian, Comparison of Electrochemical Behavior Between Coarse-Grained and Fine-Grained AISI, 430 Ferritic Stainless Steel by Mott-Schottky Analysis and EIS Measurements, J. Alloys Compd., 2015, 639, p 301–307

    Article  CAS  Google Scholar 

  41. J.L. Lv and H.Y. Luo, Comparison of Corrosion Properties of Passive Films Formed on Phase Reversion Induced Nano/Ultrafine-Grained 321 Stainless Steel, Appl. Surf. Sci., 2013, 280(8), p 124–131

    CAS  Google Scholar 

  42. J.L. Lv and H.Y. Luo, Iushi Zhongguo Effect of Nano/Ultrafine Grain on Passive film Properties of Metastable Austenitic Stainless Steels With and Without Loading, Mater. Chem. Phys., 2013, 139(2–3), p 674–680

    CAS  Google Scholar 

  43. A. Fattah-alhosseini, M.A. Golozar, A. Saatchi, and K. Raeissi, Effect of Solution Concentration on Semiconducting Properties of Passive Films Formed on Austenitic Stainless Steels, Corros. Sci., 2010, 52(1), p 205–209

    Article  CAS  Google Scholar 

  44. G.T. Burstein and P.I. Marshall, The Coupled Kinetics of Film Growth and Dissolution of Stainless Steel Repassivating in Acid Solutions, Corros. Sci., 1984, 15(37), p 449–462

    Article  Google Scholar 

  45. M.A. Barbosa, A. Garrido, A. Campilho, and I. Sutherland, The Surface Composition and Corrosion Behaviour of AISI, 304 Stainless Steel After Immersion in 20% HNO3 Solution, Corros. Sci., 1991, 32(2), p 179–184

    Article  CAS  Google Scholar 

  46. Y.Y. Song, X.Y. Li, L.J. Rong, and Y.Y. Li, The Influence of Tempering Temperature on the Reversed Austenite Formation and Tensile Properties in Fe-13%Cr-4%Ni-Mo Low Carbon Martensite Stainless Steels, Mater. Sci. Eng. A, 2011, 528(12), p 4075–4079

    Article  CAS  Google Scholar 

  47. Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping et al., Formation of the Reversed Austenite During Intercritical Tempering in a Fe-13%Cr-4%Ni-Mo Martensitic Stainless Steel, Mater. Lett., 2010, 64(13), p 1411–1414

    Article  CAS  Google Scholar 

  48. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, and Y.Y. Li, Microstructural Evolution and Low Temperature Impact Toughness of a Fe-13%Cr-4%Ni-Mo Martensitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(3), p 614–618

    Article  CAS  Google Scholar 

  49. X.W. Lei, Y.R. Feng, J.X. Zhang, A.Q. Fu et al., Impact of Reversed Austenite on the Pitting Corrosion Behavior of super 13Cr Martensitic Stainless Steel, Electrochim. Acta, 2016, 191, p 640–650

    Article  CAS  Google Scholar 

  50. W. Zhang, D.N. Zou, H.H. Yao et al., The Effect of Alloying Cu on Pitting Corrosion Resistance of Copper-Bearing Ferritic Stainless Steel, Materials Science Forum, 2008, 569, p 4

    Google Scholar 

  51. X.Y. San, B. Zhang, B. Wu, X.X. Wei et al., Investigating the Effect of Cu-Rich Phase on the Corrosion Behavior of Super 304H Austenitic Stainless Steel by TEM, Corros. Sci., 2018, 130, p 143–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support for this provided by the National Natural Science Foundation of China (51774226), Iron and Steel Joint Fund of the National Natural Science Foundation of China (U1460104), Major Program of Science and Technology in Shanxi Province (No. 20181101016), and Key Program of Shaanxi Province (2018ZDXM-GY-149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dening Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, X., Qiao, G. et al. Effect of Cobalt on the Microstructure and Corrosion Behavior of Martensitic Age-Hardened Stainless Steel. J. of Materi Eng and Perform 28, 4197–4208 (2019). https://doi.org/10.1007/s11665-019-04185-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04185-x

Keywords

Navigation