Skip to main content
Log in

Effect of Initial Goss Texture Sharpness on Texture Evolution and Magnetic Properties of Ultra-thin Grain-oriented Electrical Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystallization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.J. Moses, Scr. Mater. 67, 560 (2012)

  2. Y. Ushigami, M. Mizokami, M. Fujikura, T. Kubota, H. Fujii, K. Murakami, J. Magn. Magn. Mater. 254–255, 307 (2003)

    Article  Google Scholar 

  3. Z.S. Xia, Y.L. Kang, Q.L. Wang, J. Magn. Magn. Mater. 320, 3229 (2008)

    Article  Google Scholar 

  4. H. Wang, C.S. Li, T. Zhu, J. Miner. Metal. Mater. 21, 1077 (2014)

    Article  Google Scholar 

  5. M. Nakano, K. Ishiyama, K.I. Arai, H. Fukunaga, Appl. Phys. 81, 4098 (1997)

    Article  Google Scholar 

  6. K. Ishiyama, K.I. Arai, T. Honda, Appl. Phys. 70, 6262 (1991)

    Article  Google Scholar 

  7. T. Imamura, T. Terashima, Y. Hayakawa, JFE Tech. Rep. 6, 6 (2005)

    Google Scholar 

  8. M.L. Lobanov, G.M. Rusakov, A.A. Redikul’Tsev, Phys. Met. Metallogr. 114, 559 (2013)

    Article  Google Scholar 

  9. Y. Ushigami, Y. Okazaki, N. Abe, T. Kumano, M. Kikuchi, T. Lnokuchi, J. Mater. Eng. Perform. 4, 435 (1995)

    Article  Google Scholar 

  10. K.I. Arai, H. Satoh, S. Agatsuma, K. Ishiyama, IEEE Trans. Magn. 26, 1969 (1990)

    Article  Google Scholar 

  11. C.G. Dunn, Acta Metal. 2, 173 (1954)

  12. K.I. Arai, K. Ishiyama, Appl. Phys. 64, 5352 (1988)

    Article  Google Scholar 

  13. S. Mishra, C. Darmann, K. Lucke, Acta Metall. 12, 2185 (1984)

    Article  Google Scholar 

  14. M. Frommert, C. Zobrist, L. Lahn, A. Bottcher, D. Raabe, S. Zaefferer, J. Magn. Magn. Mater. 320, 657–660 (2008)

    Article  Google Scholar 

  15. M. Holscher, D. Raabe, K. Lucke, Acta Metall. Mater. 42, 879 (1994)

    Article  Google Scholar 

  16. C.G. Kang, H.G. Kang, H.C. Kim, M.Y. Huh, H.G. Suk, J. Mater. Process. Technol. 187, 542 (2007)

    Article  Google Scholar 

  17. W. Truszkowski, J. Krol, B. Major, Metall. Trans. A 11, 749 (1980)

    Article  Google Scholar 

  18. N. Zhang, P. Yang, C.X. He, W.M. Mao, ISIJ Int. 56, 1462 (2016)

    Article  Google Scholar 

  19. K. Arai, K. Ishiyama, H. Mogi, IEEE Trans. Magn. 25, 3949 (1989)

    Article  Google Scholar 

  20. C.G. Dunn, Acta Metall. 1, 163 (1953)

  21. Y.H. Kim, M. Ohkawa, K. Ishiyama, K.I. Arai, IEEE Trans. Magn. 8, 906 (1993)

    Article  Google Scholar 

  22. W.M. Mao, X.B. Zhao, Recrystallization and Grain Growth of Metals Metallurgy (Industry Press, Beijing, 1994), pp. 284–288

    Google Scholar 

  23. M. Nanako, H. Fukunaga, K. Lshiyama, K. Arai, IEEE Trans Magn. 35, 3379 (1999)

    Article  Google Scholar 

  24. G. Bertotti, IEEE Trans. Magn. 24, 621 (1988)

    Article  Google Scholar 

  25. Z.Z. He, Y. Zhao, H.W. Luo, Electrical Steel (Metallurgy Industry Press, Beijing, 2012), pp. 60–62

    Google Scholar 

  26. M.L. Lobanov, A.A. Redikul’Tsev, G.M. Rusakov, I.V. Kagan, O.V. Pervushina, Phys. Met. Metallogr. 111, 479 (2011)

    Article  Google Scholar 

  27. K.I. Arai, K. Ishiyama, Bull. Jpn. Inst. Met. 31, 429 (1992)

    Article  Google Scholar 

  28. K.I. Arai, K. Ishiyama, Mater. Sci. Forum 204–206, 133 (1996)

    Article  Google Scholar 

  29. X.H. Gao, K.M. Qi, C.L. Qiu, T. Mater, Heat. Treat. 27, 91 (2006)

    Google Scholar 

  30. X.H. Gao, K.M. Qi, C.L. Qiu, Mater. Sci. Eng. A 430, 138 (2006)

    Article  Google Scholar 

  31. N. Maazi, N. Rouag, A.L. Etter, R. Penelle, T. Baudin, Scr. Mater. 55, 641 (2006)

    Article  Google Scholar 

  32. A. Morawiec, Scr. Mater. 43, 275 (2000)

    Article  Google Scholar 

  33. K.H. Chai, N.H. Heo, J.G. Na, S.L. Li, Appl. Phys. 87, 5233 (2000)

    Article  Google Scholar 

  34. R. PremKumar, I. Samajdar, N.N. Viswanathan, J. Magn. Magn. Mater. 264, 75 (2003)

    Article  Google Scholar 

  35. T. Yonamine, F.J.G. Landgraf, J. Magn. Magn. Mater. 272, 565 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National High Technology Research and Development Program of China (Grant No. 2012AA03A505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, RY., Yang, P. & Mao, WM. Effect of Initial Goss Texture Sharpness on Texture Evolution and Magnetic Properties of Ultra-thin Grain-oriented Electrical Steel. Acta Metall. Sin. (Engl. Lett.) 30, 895–906 (2017). https://doi.org/10.1007/s40195-017-0610-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0610-7

Keywords

Navigation