Skip to main content
Log in

Role of texture before rolling: a research based on texture and magnetic properties of 4.5 wt.% Si non-oriented electrical steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The evolution of microstructure, texture, and magnetic properties with random texture, near-copper texture, weak near-cube texture, and strong λ fiber (<001>//ND (normal direction)) before rolling of non-oriented electrical steel was studied. Three recrystallized hot bands with different textures but similar grain sizes were prepared by pre-annealing at low-temperature and high-temperature normalization annealing. It was observed that the final annealed products exhibited similar recrystallized microstructures. By contrast, the final annealed product with more λ fiber before rolling exhibited a stronger cube texture. With the λ fiber before rolling becoming stronger, the proportion of {111}<110> deformed matrices became larger, which could be observed in the early recrystallization stage. The overwhelmingly dominant λ orientation nuclei are formed in the {111}<110> deformed matrix and become the dominant texture. Eventually, the best magnetic properties are obtained in the products with strong λ fiber before rolling, corresponding to the strong cube texture and low anisotropy parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Silveyra, E. Ferrara, D. Huber, T. Monson, Science 362 (6413) eaao0195.

  2. Jiao, Y. Xu, L. Zhao, R.D.K. Misra, C. Mao, C. Liu, G. Liu, L. Yu, H. Li, J. Dong, Y. Liu, Metall. Mater. Trans. A 52 (2021) 119–128.

    Article  Google Scholar 

  3. T. Zhang, Y. Han, W. Wang, Y. Gao, Y. Song, X. Ran, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 1289–1301.

    Article  Google Scholar 

  4. F.J.G. Landgraf, JOM 64 (2012) 764–771.

    Article  Google Scholar 

  5. Y. Xu, H. Jiao, Y. Zhang, F. Fang, X. Lu, Y. Wang, G. Cao, C. Li, R.D.K. Misra, J. Mater. Sci. Technol. 33 (2017) 1465–1474.

    Article  Google Scholar 

  6. K.M. Lee, S.Y. Park, M.Y. Huh, J.S. Kim, O. Engler, J. Magn. Magn. Mater. 354 (2014) 324–332.

    Article  Google Scholar 

  7. H. Shimanaka, Y. Ito, K. Matsumara, B. Fukuda, J. Magn. Magn. Mater. 26 (1982) 57–64.

    Article  Google Scholar 

  8. C. Bolfarini, M.C.A. Silva, A.M. Jorge Jr, C.S. Kiminami, W.J. Botta, J. Magn. Magn. Mater. 320 (2008) e653–e656.

    Article  Google Scholar 

  9. J. Barros, T. Ros-Yañez, L. Vandenbossche, L. Dupré, J. Melkebeek, Y. Houbaert, J. Magn. Magn. Mater. 290–291 (2005) 1457–1460.

    Article  Google Scholar 

  10. T. Yonamine, N.A. Castro, F.J. Landgraf, Steel Res. Int. 76 (2005) 461–463.

    Article  Google Scholar 

  11. Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, G.L. Chen, J. Alloy. Compd. 491 (2010) 268–270.

    Article  Google Scholar 

  12. Y. Yao, Y. Sha, J. Liu, F. Zhang, L. Zuo, Metall. Mater. Trans. A 47 (2016) 5771–5776.

    Article  Google Scholar 

  13. J.S. Shin, J.S. Bae, H.J. Kim, H.M. Lee, T.D. Lee, E.J. Lavernia, Z.H. Lee, Mater. Sci. Eng. A 407 (2005) 282–290.

    Article  Google Scholar 

  14. T. Ros-Yañez, Y. Houbaert, O. Fischer, J. Schneider, J. Mater. Process. Technol. 143–144 (2003) 916–921.

    Article  Google Scholar 

  15. G. Zu, X.M. Zhang, J. Zhao, Y. Cui, Y. Wang, Z. Jiang, Mater. Des. 85 (2015) 455–460.

    Article  Google Scholar 

  16. G. Zu, Y. Wang, J. Zhao, Y. Yan, X. Zhang, X. Ran, Z. Jiang, Mater. Charact. 163 (2020) 110310.

    Article  Google Scholar 

  17. Y. Lu, G. Zu, L. Luo, Y. Wang, L. Gao, L. Yuan, X. Ran, X. Zhang, J. Magn. Magn. Mater. 497 (2020) 165975.

    Article  Google Scholar 

  18. J.Y. Park, K.H. Oh, H.Y. Ra, ISIJ Int. 41 (2001) 70–75.

    Article  Google Scholar 

  19. G. Zu, Y. Xu, L. Luo, Y. Han, S. Sun, R. Miao, W. Zhu, L. Gao, X. Ran, J. Mater. Res. Technol. 17 (2022) 365–373.

    Article  Google Scholar 

  20. H.T. Liu, H.L. Li, H. Wang, Y. Liu, F. Gao, L.Z. An, S.Q. Zhao, Z.Y. Liu, G.D. Wang, J. Magn. Magn. Mater. 406 (2016) 149–158.

    Article  Google Scholar 

  21. J.T. Park, J.A. Szpunar, J. Magn. Magn. Mater. 321 (2009) 1928–1932.

    Article  Google Scholar 

  22. H.G. Kang, K.M. Lee, M.Y. Huh, J.S. Kim, J.T. Park, O. Engler, J. Magn. Magn. Mater. 323 (2011) 2248–2253.

    Article  Google Scholar 

  23. H. Yashiki, A. Okamoto, IEEE Trans. Magn. 23 (1987) 3086–3088.

    Article  Google Scholar 

  24. H. Li, J. Magn. Magn. Mater. 546 (2022) 168897.

    Article  Google Scholar 

  25. K. Lee, M.Y. Huh, H. Lee, J. Park, J. Kim, E. Shin, O. Engler, J. Magn. Magn. Mater. 396 (2015) 53–64.

    Article  Google Scholar 

  26. J.J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P.R. Calvillo, L.A.I. Kestens, Mater. Charact. 71 (2012) 49–57.

    Article  Google Scholar 

  27. H. Jiao, Y. Xu, L. Zhao, R.D.K. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, M. Shen, Acta Mater. 199 (2020) 311–325.

    Article  Google Scholar 

  28. Y. Wang, G. Zu, D. Zhang, Y. Han, W. Zhu, H. Sun, B. Wang, X. Ran, Met. Mater. Int. 22 (2022) 2849–2862.

    Article  Google Scholar 

  29. Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, L. Zuo, Acta Mater. 76 (2014) 106–117.

    Article  Google Scholar 

  30. J.T. Park, J.A. Szpunar, Acta Mater. 51 (2003) 3037–3051

    Article  Google Scholar 

  31. G.T. Higgins, Met. Sci. 8 (1974) 143–150.

    Article  Google Scholar 

  32. Y. Lü, D.A. Molodov, G. Gottstein, Acta Mater. 59 (2011) 3229–3243.

    Article  Google Scholar 

  33. H.T. Liu, J. Schneider, H.L. Li, Y. Sun, F. Gao, H.H. Lu, H.Y. Song, L. Li, D.Q. Geng, Z.Y. Liu, G.D. Wang, J. Magn. Magn. Mater. 374 (2015) 577–586.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52174355, 51701021, 51974032, and 51604034), the China Postdoctoral Science Foundation funded project (Grant Nos. 2022T150074 and 2021M693904), and the Science and Technology Development Program of Jilin Province (Grant No. 20230201149GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-qing Zu or Xu Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yf., Zu, Gq., Sun, Sc. et al. Role of texture before rolling: a research based on texture and magnetic properties of 4.5 wt.% Si non-oriented electrical steel. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01187-5

Keywords

Navigation