Skip to main content

Advertisement

Log in

Influence of Multi-pass Friction Stir Processing on Microstructure and Mechanical Properties of Die Cast Al–7Si–3Cu Aluminum Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influence of overlap multi-pass friction stir processing on the microstructure and the mechanical properties, in particular, strength, ductility and hardness of die cast Al–7Si–3Cu aluminum alloy was investigated. It was observed that increase in the number of overlap passes friction stir processing resulted in significant refinement and redistribution of aluminum silicon eutectic phase and elimination of casting porosities. The microstructural refinement by the friction stir processing not only increases the ultimate tensile strength from 121 to 273 MPa, but also increases the ductility as observed by the increase in fracture strain from 1.8% to 10%. Analysis of the fractured surface reveals that the microstructural refinement obtained by friction stir processing plays a vital role in transforming the fracture mode from completely mixed mode to the ductile mode of the fracture with increasing number of passes. The change in the size, shape, morphology and distribution of eutectic silicon particles and elimination of the porosities are the main reasons for the increases in tensile strength and ductility due to friction stir processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.L. Zhang, L. Zheng, Metall. Mater. Trans. A 27, 3983 (1996)

    Article  Google Scholar 

  2. Y.B. Yu, P.Y. Song, S.S. Kim, J.H. Lee, Scr. Mater. 41, 767 (1999)

    Article  Google Scholar 

  3. G. Atxang, A. Pelayo, A.M. Irrisarri, Mater. Sci. Technol. 17, 446 (2001)

    Article  Google Scholar 

  4. K.T. Kashyap, S. Murali, K.S. Raman, K.S.S. Murthy, Mater. Sci. Technol. 9, 189 (1993)

    Article  Google Scholar 

  5. J. Jiang, Y. Wang, J. Qu, Mater. Sci. Eng. A 560, 473 (2013)

    Article  Google Scholar 

  6. J. Jiang, Y. Wang, Z. Du, J. Qu, Y. Sun, S. Luo, J. Mater. Process. Technol. 210, 751 (2010)

    Article  Google Scholar 

  7. W.M. Thomas, US Patent Patent Application No. 9125978.8 (1991)

  8. Z.Y. Ma, S.R. Sharma, R.S. Mishra, M.W. Mohaney, Mater. Sci. Forum 2891, 426–432 (2003)

    Google Scholar 

  9. Z.Y. Ma, S.R. Sharma, R.S. Mishra, Metall. Mater. Trans. A 37, 3323 (2006)

    Article  Google Scholar 

  10. Z.Y. Ma, S.R. Sharma, R.S. Mishra, Scr. Mater. 54, 1623 (2006)

    Article  Google Scholar 

  11. S.R. Sharma, Z.Y. Ma, R.S. Mishra, Scr. Mater. 51, 237 (2004)

    Article  Google Scholar 

  12. M.L. Santella, T. Engstrom, D. Storjohann, T.Y. Pan, Scr. Mater. 53, 201 (2005)

    Article  Google Scholar 

  13. F. Nacimento, T. Santos, P. Vilaca, R.M. Miranda, L. Quintino, Mater. Sci. Eng. A 506, 16 (2009)

    Article  Google Scholar 

  14. A.G. Rao, B.R.K. Rao, V.P. Deshmukh, A.K. Shah, B.P. Kashyap, Mater. Lett. 63, 2628 (2009)

    Article  Google Scholar 

  15. K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, T. Komzaki, Mater. Sci. Eng. A 437, 274 (2006)

    Article  Google Scholar 

  16. M.M.E. Rayes, E.A.E. Danaf, J. Mater. Process. Technol. 212, 1157 (2012)

    Article  Google Scholar 

  17. G.R. Cui, D.R. Ni, Z.Y. Ma, S.X. Li, Metall. Mater. Trans. A 45, 5318 (2014)

    Article  Google Scholar 

  18. N. Nadammal, S.V. Satish, S. Suwas, Mater. Des. 65, 127 (2015)

    Article  Google Scholar 

  19. S. Tutinchilar, G.M.K. Besharati, M. Haghpanahi, P. Asadi, Mater. Sci. Eng. A 534, 557 (2012)

    Article  Google Scholar 

  20. D. Yadav, R. Bauri, Mater. Sci. Eng. A 539, 85 (2012)

    Article  Google Scholar 

  21. R. Bauri, D. Yadav, G. Suhas, Mater. Sci. Eng. A 528, 1326 (2011)

    Article  Google Scholar 

  22. K. Surekha, B.S. Murty, K.P. Rao, Surf. Coat. Technol. 202, 4057 (2008)

    Article  Google Scholar 

  23. Z.Y. Ma, S.R. Sharma, R.S. Mishra, Mater. Sci. Eng. A 433, 272 (2006)

    Article  Google Scholar 

  24. K. Elangovan, V. Balasubramanian, Mater. Charact. 59, 1168 (2008)

    Article  Google Scholar 

  25. F.Y. Tsai, P.W. Kao, Mater. Lett. 80, 40 (2012)

    Article  Google Scholar 

  26. L. Karthikeyan, V.S. Senthilkumar, V. Balasubramanian, S. Natarajan, Mater. Des. 30, 2237 (2009)

    Article  Google Scholar 

  27. D. Lu, S. Wei, M. Zhou, Y. Jiang, R. Zhou, Adv. Mater. Res. 1689, 148–149 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Centre for Materials Joining & Research (CEMAJOR), Department of manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu, India, for extending the facilities of Metal Joining Laboratory to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dinaharan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John Baruch, L., Raju, R., Balasubramanian, V. et al. Influence of Multi-pass Friction Stir Processing on Microstructure and Mechanical Properties of Die Cast Al–7Si–3Cu Aluminum Alloy. Acta Metall. Sin. (Engl. Lett.) 29, 431–440 (2016). https://doi.org/10.1007/s40195-016-0405-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0405-2

Keywords

Navigation