Skip to main content
Log in

Mechanical properties enhancement of cast Al-8.5Fe-1.3V-1.7Si (FVS0812) alloy by friction stir processing

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the capability of multi-pass friction stir processing (FSP) on microstructure modification and mechanical properties improvement of FVS0812 alloy. FSP was performed at different rotation speeds (1250, 1600, 2000, and 2500 rpm) and traverse speeds (8, 12, and 25 mm/min) for one, two, and four passes. According to the results, applying single-pass FSP at optimized conditions (i.e. 1600 rpm and 12 mm/min) enhanced the tensile strength, fracture strain, and microhardness of the alloy by about 1020, 1050, and 60%, respectively. This improvement can be mainly attributed to the intense breakage and uniform distribution of θ-Al13Fe4 and α-Al12(Fe,V)3Si intermetallics within the matrix, formation of ultrafine recrystallized grains, and elimination of casting defects. Increasing the number of FSP passes up to four slightly decreased the average size of intermetallic particles, but significantly improved their distribution within the matrix which led to 18 and 200% improvement of tensile strength and fracture strain of one-pass FSPed sample, respectively. The fractography results also revealed that multi-pass FSP has changed the fracture mode of Al-8.5Fe-1.3V-1.7Si alloy from low-energy brittle to a more ductile-dimple fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kaufman JG. Fire resistance of aluminum and aluminum alloys: measuring the effects of fire exposure & on the properties of aluminum alloys. First printing, Chapter 1. Materials Park: ASM International; 2016.

  2. Rakhmonov J, Timelli G, Bonollo F. The effect of transition elements on high-temperature mechanical properties of Al-Si foundry alloys—a review. Adv Eng Mater. 2016;18:1096–105.

    Article  Google Scholar 

  3. Stevam R, Neto RML, Camargo PA, Filho FA. Al-Fe-X-Si (X=V or Nb) alloy powders prepared by high energy milling in an attritor mill. J Metastable Nanocryst Mater. 2004;20–21:207–12.

    Google Scholar 

  4. Yaneva S, Petrov K, Petrov R, Stoichev N, Avdeev G, Kuziak R. Influence of silicon content on phase development in Al–Fe–V–Si alloys. Mater Sci Eng A. 2009;515(1–2):59–655.

    Article  Google Scholar 

  5. Tang Y, Tan D, Li W, Pan Z, Liu L, Hu W. Preparation of Al–Fe–V–Si alloy by spray co-deposition with added its over-sprayed powders. J Alloys Compd. 2007;439(1–2):103–8.

    Article  Google Scholar 

  6. Zheng L, Liu Y, Sun S, Zhang H. Selective laser melting of Al–8.5Fe–1.3V–1.7Si alloy: investigation on the resultant microstructure and hardness. Chin J Aeronaut. 2015;28(2):564–9.

    Article  Google Scholar 

  7. Marshall R. Characterization of novel microstructure in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates, Ph.D. Thesis, Faculty and the boards of Trustees of the Colorado school of mines; 2015.

  8. Ozyurda HA. Spray rolling of rapidly-solidified Al-Fe-V-Si alloy, Ph.D. Thesis, Middle East Technical University; 2006.

  9. Arhami M, Sarioglu F, Kalkanli A, Hashemipour M. Microstructural characterization of squeeze-cast Al–8Fe–1.4V–8Si. Mater Sci Eng A. 2008;485:218–23.

    Article  Google Scholar 

  10. Sahoo KL, Das SK, Murty BS. Formation of novel microstructures in conventionally cast Al–Fe–V–Si alloys. Mater Sci Eng A. 2003;355(1–2):193–200.

    Article  Google Scholar 

  11. Sahoo KL, Sivaramakrishnan CS, Chakrabarti AK. Modification of cast structure in Al–8.3Fe–0.8V–0.9Si alloy by magnesium treatment. Mater Sci Technol. 2000;16(2):227–30.

    Article  ADS  Google Scholar 

  12. Sahoo K, Krishnan CS, Chakrabarti A. Studies on wear characteristics of Al–Fe–V–Si alloys. Wear. 2000;239(2):211–8.

    Article  Google Scholar 

  13. Sahoo KL, Pathak BN. Solidification behaviour, microstructure and mechanical properties of high Fe-containing Al–Si–V alloys. J Mater Proc Technol. 2009;209(2):798–804.

    Article  Google Scholar 

  14. Liu Y-L, Luo L, Shun M-Z, Zhang L, Zhao Y-H, Wu B-L. Microstructure and mechanical properties of Al–5.5Fe–1.1V–0.6Si alloy solidified under near-rapid cooling and with Ce addition. Rare Met. 2016;37(12):1070–5.

    Article  Google Scholar 

  15. Ma ZY. Friction stir processing technology: a review. Metall Mater Trans. 2008;39A:642–58.

    Article  Google Scholar 

  16. Fekri Soustani M, Taghiabadi R, Jafarzadegan M, Shahriyari F, Rahmani A. Improving the tribological properties of Al-7Fe-5Ni alloys via friction stir processing. J Tribol. 2019;141(12):1–19.

    Article  Google Scholar 

  17. Rao AG, Deshmukh VP, Prabhu N, Kashyap BP. Enhancing the machinability of hypereutectic Al-30Si alloy by friction stir processing. J Manuf Proc. 2016;23:130–4.

    Article  Google Scholar 

  18. Moharrami A, Razaghian A, Emamy M, Taghiabadi R. Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. J Tribol. 2019;141(12):122202.

    Article  Google Scholar 

  19. Sun S, Zheng L, Liu Y, Liu J, Zhang H. Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J Mater Res. 2015;30(10):1661–9.

    Article  ADS  Google Scholar 

  20. Rai R, De A, Bhadeshia HKDH, DebRoy T. Review: friction stir welding tools. Sci Technol Weld Join. 2011;16(4):325–42.

    Article  Google Scholar 

  21. Zhang YN, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Can Metall Q. 2012;51(3):250–61.

    Article  Google Scholar 

  22. Taylor RP, McClain ST, Berry JT. Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle. Int J Cast Metals Res. 1999;11(4):247–57.

    Article  Google Scholar 

  23. Zou Q, Zhao M, Yin F, Li Z, Liu Y. Phase equilibria in the Al-rich corner of the Al-Fe-Si-V quaternary system at 620 °C. J Phase Equilib Diffus. 2017;36(3):274–82.

    Article  Google Scholar 

  24. Anyalebechi PN. Analysis of the effects of alloying elements on hydrogen solubility in liquid aluminum alloys. Scrip Metall Mater. 1995;33(8):1209–16.

    Article  Google Scholar 

  25. Węglowski MS, Sedek P, Hamilton C. Experimental analysis of residual stress in friction stir processed cast AlSi9Mg aluminium alloy. Key Eng Mater. 2016;682:18–23.

    Article  Google Scholar 

  26. Shahriyari F, Taghiabadi R, Razaghian A, Mahmoudi M. Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy. J Manuf Proc. 2018;31:776–86.

    Article  Google Scholar 

  27. Hyett G, Green M, Parkin IP. X-ray diffraction area mapping of preferred orientation and phase change in TiO2 thin films deposited by chemical vapor deposition. J Am Chem Soc. 2006;128(37):12147–55.

    Article  Google Scholar 

  28. Su J-Q, Nelson TW, Sterling CJ. Grain refinement of aluminum alloys by friction stir processing. Philos Mag. 2006;86(1):1–24.

    Article  ADS  Google Scholar 

  29. Totten GE, Scott MD. Handbook of aluminum: alloy production and materials manufacturing, vol. 2. New York: Marcel Dekker Inc.; 2003.

    Book  Google Scholar 

  30. Moharrami A, Razaghian A, Paidar M, Šlapáková M, Ojo OO, Taghiabadi R. Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Mater Chem Phys. 2020;250:123066.

    Article  Google Scholar 

  31. Su JQ, Nelson TW, Sterling CJ. Development of ultrafine grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr. Mater Res. 2003;18:1757–60.

    Article  ADS  Google Scholar 

  32. Mbuya TO, Odera BO, Ng’ang’a SP. Influence of iron on castability and properties of aluminium silicon alloys: literature review. Int J Cast Metals Res. 2016;16(5):451–65.

    Article  Google Scholar 

  33. Armbrüster M, Schlögl R, Grin Y. Intermetallic compounds in heterogeneous catalysis-a quickly developing field. Sci Technol Adv Mater. 2014;15(3):34803.

    Article  Google Scholar 

  34. Herlach DM, Simons D, Pichon PY. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge–Si alloys. Philos Trans R Soc A Math Phys Eng Sci. 2018;376(2113):20170205.

    Article  ADS  Google Scholar 

  35. Vorren O, Evensen JE, Pedersen TB. Microstructure and mechanical properties of AlSi (Mg) casting alloy. AFS Trans. 1984;92:459–66.

    Google Scholar 

  36. Hannard F, Castin S, Maire E, Mokso R, Pardoen T, Simar A. Ductilization of aluminium alloy 6056 by friction stir processing. Acta Mater. 2017;130:121–36.

    Article  ADS  Google Scholar 

  37. Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mate Sci Eng A. 2008;483–484:148–52.

    Article  Google Scholar 

  38. Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Proc Technol. 2015;224:117–34.

    Article  Google Scholar 

  39. Liu L, Bao R, Yi J, Fang D. Fabrication of CNT/Cu composites with enhanced strength and ductility by SP combined with optimized SPS method. J Alloys Compd. 2018;747:91–9.

    Article  Google Scholar 

  40. Shaeri MH, Shaeri M, Salehi MT, Seyyedein SH, Djavanroodi F, Abutalebi MR. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Prog Nat Sci Mater Int. 2015;25:159–68.

    Article  Google Scholar 

  41. Huang KT, Lui TS, Chen LH. Effect of dynamically recrystallized grain size on the tensile properties and vibration fracture resistance of friction stirred 5052 alloy. Mater Trans. 2006;47:2405–12.

    Article  Google Scholar 

  42. Yuvaraj N, Aravindan S. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J Mater Res Technol. 2015;4(4):398–410.

    Article  Google Scholar 

  43. Shibayanagi T, Gerlich AP, Kashihara K, North TH. Texture in single-crystal aluminum friction spot welds. Metall Mater Trans A. 2009;40A:920.

    Article  ADS  Google Scholar 

  44. Taghiabadi R, Aria N. Statistical strength analysis of dissimilar AA2024-T6 and AA6061-T6 friction stir welded joints. J Mater Eng Perform. 2019;28:1822–32.

    Article  Google Scholar 

  45. Xiao BL, Fan J, Zhou L, Shi L. Microstructure and mechanical properties of Al-Fe-V-Si alloy and composites. J Ceram Proc Res. 2006;7(2):164–6.

    Google Scholar 

  46. Sun S, Zheng L, Peng H, Zhang H. Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting. Mater Sci Eng A. 2016;659:207–14.

    Article  Google Scholar 

  47. Liebermann HH. Rapidly solidified alloys: processes, structures, properties, applications. New York: Marcel Dekker Inc.; 1993.

    Book  Google Scholar 

  48. Zhang R, Wu B. Effect of TiC particles on microstructure and properties of Al-Fe-V-Si alloy. App Mech Mater. 2014;543–547:3725–8.

    Article  Google Scholar 

  49. Prakash U, Raghu T, Gokhale A, Kamat S. Microstructure and mechanical properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce alloys. J Mater Sci. 1999;34:5061–5.

    Article  ADS  Google Scholar 

  50. Chen ZH, Chen ZG, Yan HG, Chen D, He YQ, Chen G. Novel method for densification of porous spray deposited Al–Fe–V–Si alloy tube performs. Mater Sci Technol. 2009;25(1):111–6.

    Article  ADS  Google Scholar 

  51. Hariprasad S, Sastry SML, Jerina KL, Lederich RJ. Microstructures and mechanical properties of dispersion-strengthened high-temperature Al-8.5Fe-1.2V-1.7Si alloys produced by atomized melt deposition process. Metall Trans A. 1993;24:865–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taghiabadi.

Ethics declarations

Conflict of interest

The authors had no funding sources or conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, Z., Taghiabadi, R. & Moazami-Goudarzi, M. Mechanical properties enhancement of cast Al-8.5Fe-1.3V-1.7Si (FVS0812) alloy by friction stir processing. Archiv.Civ.Mech.Eng 20, 102 (2020). https://doi.org/10.1007/s43452-020-00106-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00106-1

Keywords

Navigation