Skip to main content
Log in

Role of Substrate Roughness in ZnO Nanowire Arrays Growth by Hydrothermal Approach

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The role of substrate roughness in ZnO nanowire (NW) arrays hydrothermal growth has been systematically studied. Six silicon substrates with different roughness by chemical etching have been selected to grow ZnO NW arrays hydrothermally after sputtering 5-nm-thick ZnO seed layer as catalyst. The as-grown samples reveal that average diameters and number densities of ZnO NW arrays are inversely proportional to the increasing substrate roughness observed by atomic-force microscopy and scanning electron microscopy. Furthermore, the theoretically derived equations based on nucleation with the Gibbs free energy to describe relations of substrate roughness versus average NW diameter and NW number density match well with experimental results. Research results in this paper can be used to control the number density and the average diameter of ZnO NW arrays by alternating substrate roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.M. Jiang, W.Q. Lu, J.H. Song, Nano Lett. 13, 111 (2013)

    Article  Google Scholar 

  2. C.L. Tang, C.M. Jiang, W.Q. Lu, J.H. Song, Phys. Chem. Chem. Phys. 15, 8222 (2013)

    Article  Google Scholar 

  3. G. Yu, C. Tang, J. Song, W. Lu, Appl. Phys. Lett. 104, 153109 (2014)

    Article  Google Scholar 

  4. C.M. Jiang, J.H. Song, Small. 10, 5042 (2014)

    Google Scholar 

  5. C.M. Jiang, J.H. Song, Adv. Mater. 27, 4454 (2015)

    Article  Google Scholar 

  6. H. Chang, M.H. Tsai, Rev. Adv. Mater. Sci. 18, 736 (2008)

    Google Scholar 

  7. S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. 16, 155 (2006)

    Article  Google Scholar 

  8. B.D. Busbee, S.O. Obare, C.J. Murphy, Adv. Mater. 15, 414 (2003)

    Article  Google Scholar 

  9. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  Google Scholar 

  10. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, Z.L. Wang, J. Mater. Chem. 19, 9260 (2009)

    Article  Google Scholar 

  11. X.D. Wang, J.H. Song, Z.L. Wang, Chem. Phys. Lett. 424, 86 (2006)

    Article  Google Scholar 

  12. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666 (2011)

    Article  Google Scholar 

  13. F. Wang, C.M. Jiang, C.L. Tang, S. Bi, Q.H. Wang, D.F. Du, J.H. Song, Nano Energy 21, 209 (2016)

    Article  Google Scholar 

  14. J.H. Song, Y. Zhang, C. Xu, W.Z. Wu, Z.L. Wang, Nano Lett. 11, 2829 (2011)

    Article  Google Scholar 

  15. J.H. Song, H.Z. Xie, W.Z. Wu, V.R. Joseph, C.F.J. Wu, Z.L. Wang, Nano Res. 3, 613 (2010)

    Article  Google Scholar 

  16. H.L. Wang, H.J. Dai, Chem. Soc. Rev. 42, 3088 (2013)

    Article  Google Scholar 

  17. J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.J. Kim, S.I. Seok, M.K. Nazeeruddin, M. Gratzel, Nano Lett. 10, 2609 (2010)

    Article  Google Scholar 

  18. F. Li, Y. Ding, P. Gao, X. Xin, Z.L. Wang, Angew. Chem. Int. Ed. 116, 5350 (2004)

    Article  Google Scholar 

  19. I.C. Chiang, D.H. Chen, Chem. Lett. 37, 928 (2008)

    Article  Google Scholar 

  20. L.S. Wang, X.Z. Zhang, S.Q. Zhao, G.Y. Zhou, Y.L. Zhou, J.J. Qi, Appl. Phys. Lett. 86, 024108 (2005)

    Article  Google Scholar 

  21. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  Google Scholar 

  22. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455 (2005)

    Article  Google Scholar 

  23. H. Fang, W.Z. Wu, J.H. Song, Z.L. Wang, J. Phys. Chem. C 113, 16571 (2009)

    Article  Google Scholar 

  24. S. Li, X.Z. Zhang, B. Yan, T. Yu, Nanotechnology 20, 495604 (2009)

    Article  Google Scholar 

  25. W.Q. Lu, C.M. Jiang, D. Caudle, C.L. Tang, Q. Sun, J.J. Xu, J.H. Song, Phys. Chem. Chem. Phys. 15, 13532 (2013)

    Article  Google Scholar 

  26. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, H.J. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  Google Scholar 

  27. J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, J. Phys. Chem. B 109, 9869 (2005)

    Article  Google Scholar 

  28. J.Y. Kim, J.W. Cho, S.H. Kim, Mater. Lett. 65, 1161 (2011)

    Article  Google Scholar 

  29. J.L. Lee, S.H. Kwak, H.J. Kim, Thin Solid Films 423, 262 (2003)

    Article  Google Scholar 

  30. Y. Yoshino, K. Inoue, M. Takeuchi, T. Makino, Y. Katayama, T. Hata, Vacuum 59, 403 (2000)

    Article  Google Scholar 

  31. Y.J. Kim, J. Yoo, B.H. Kwon, Y.J. Hong, C.H. Lee, G.C. Yi, Nanotechnology 19, 315202 (2008)

    Article  Google Scholar 

  32. C.M. Jiang, C.L. Tang, J.H. Song, Nano Lett. 15, 1128 (2015)

    Article  Google Scholar 

  33. R.X. Shi, P. Yang, S. Zhang, X.B. Dong, Ceram. Int. 40, 3637 (2014)

    Article  Google Scholar 

  34. Y.G. Han, X.G. Yu, D. Wang, D.R. Yang, J. Nanomater. 2013, 716012 (2013)

    Google Scholar 

  35. B.D. Choudhury, A. Abedin, A. Dev, R. Sanatinia, S. Anand, Opt. Mater. Express 3, 1039 (2013)

    Article  Google Scholar 

  36. L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P.D. Yang, Inorg. Chem. 45, 7535 (2006)

    Article  Google Scholar 

  37. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P.D. Yang, Nano Lett. 5, 1231 (2005)

    Article  Google Scholar 

  38. P.S. Swain, R. Lipowsky, Langmuir 14, 6772 (1998)

    Article  Google Scholar 

  39. Y. Zhang, M. Wang, X. Lin, W.D. Huang, J. Mater. Sci. Technol. 28, 67 (2012)

    Article  Google Scholar 

  40. M. Laurenti, V. Cauda, R. Gazia, M. Fontana, V.F. Rivera, S. Bianco, G. Canavese, Eur. J. Inorg. Chem. 2013, 2520 (2013)

    Article  Google Scholar 

  41. A.R. Balkenende, H.J.A.P. van de Boogaard, M. Scholten, N.P. Willard, Langmuir 14, 5907 (1998)

    Article  Google Scholar 

  42. X. Liu, X.H. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)

    Article  Google Scholar 

  43. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Phys. B 403, 3713 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors specially thank Prof. Mankey for sputtering the ZnO film. This work has been supported by Jiangsu Provincial Department of Education with the 2012 Project of Overseas Research of Distinguished Young and Middle-aged Teachers and Principals, the University of Alabama startup fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hui Song.

Additional information

Qiu-Hong Wang and Chao-Long Tang have contributed equally to this work.

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QH., Tang, CL., Jiang, CM. et al. Role of Substrate Roughness in ZnO Nanowire Arrays Growth by Hydrothermal Approach. Acta Metall. Sin. (Engl. Lett.) 29, 237–242 (2016). https://doi.org/10.1007/s40195-016-0383-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0383-4

Keywords

Navigation