Skip to main content
Log in

Optimizing the preparation parameters of nanocrystalline zirconia for catalytic applications

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Nanocrystalline zirconia powder with high surface area and high tetragonal phase percentage is prepared by the precipitation method using ammonium hydroxide as a precipitating agent. The pH of precipitation, preparation temperature and calcinations’ temperature are optimized. Crystallite size, specific surface area, tetragonal phase percentage and the thermal stability of the prepared samples are identified by different characterization tools such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), BET surface area, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optimum preparation parameters for obtaining nanocrystalline zirconia with high percentage of tetragonal phase and high surface area are pH 9, preparation temperature of 80 °C and calcinations’ temperature of 400 °C. The sample prepared under optimized conditions showed a high specific surface area of 179.2 m2/g, high tetragonal phase percentage of 81% and high catalytic activity (60%) for synthesis of butyl acetate ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Lee and W.M. Rainforth, Ceramic Microstructures: Property Control by Processing, Chapman & Hall, London, 1994.

    Google Scholar 

  2. R.E. Juárez, D.G. Lamas, G.E. Lascalea and N.E. Walsöe de Reca, Defect Diffus. Forum 177–178 (1999) 1.

    Google Scholar 

  3. D.G. Lamas, A.M. Rosso, M. Suarez Anzorena, A. Fernández, M.G. Bellino, M.D. Cabezas, N.E. Walso de Recaa and A.F. Craievichc, Scr. Mater. 55 (2006) 553.

    Article  CAS  Google Scholar 

  4. J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vázquez, A. Garcia-Ruiz and X. Bokhimi, Catal. Today 68 (2001) 21.

    Article  CAS  Google Scholar 

  5. D.H. Aguilar, L.C. Torres-Gonzalez, L.M. Torres-Martinez, T. Lopez and P. Quintana, J. Solid State Chem. 158 (2001) 349.

    Article  CAS  Google Scholar 

  6. J.L. Shi and J.H. Gao, J. Mater. Sci. 30 (1995) 793.

    Article  CAS  Google Scholar 

  7. A.W.L. Dudeney, Powder Technol. 65 (1991) 207.

    Article  CAS  Google Scholar 

  8. A. Clearfield, Rev. Pure Appl. Chem. 14 (1964) 91.

    CAS  Google Scholar 

  9. T. Yamaguchi, Catal. Today 20 (1994) 199.

    Article  CAS  Google Scholar 

  10. M. Ye and J.G. Eckerdt, J. Catal. 87 (1984) 381.

    Article  Google Scholar 

  11. G.K. Chuah, S. Jaenicke, S.A. Cheong and K.S. Chan, Appl. Catal. A 145 (1996) 267.

    Article  CAS  Google Scholar 

  12. J.P. Chang, Y-S. Lin and K. Chu, J. Vac. Sci. Technol. B 19(5) (2001) 1782.

    Article  CAS  Google Scholar 

  13. P. Scherrer, Göettinger Nachrichten 2 (1918) 98.

    Google Scholar 

  14. R. Srinivasan and R. de Angelis, J. Mater. Res. 1(4) (1986) 583.

    Article  Google Scholar 

  15. R. Srinivasan, C.R. Hubbard, O.B. Cavin and B.H. Davis, Chem. Mater. 5(1) (1993) 27.

    Article  CAS  Google Scholar 

  16. G. Stefanic, S. Music, B. Grzeta, S. Popovic and A. Sekulic, J. Phys. Chem. Solids 59 (1998) 879.

    Article  CAS  Google Scholar 

  17. R. Srinivasan, M.B. Harris, S.F. Simpson, R.J. de Angelis and B.H. Davis, J. Mater. Res. 3 (1988) 787.

    Article  CAS  Google Scholar 

  18. G.K. Chuah, Catal. Today 49 (1999) 131.

    Article  CAS  Google Scholar 

  19. M. Hajir, P. Dolcet and V. Fischer, J. Mater. Chem. 22 (2012) 5622.

    Article  CAS  Google Scholar 

  20. T.W. Swaddle, Inorganic Chemistry, Elsevier Inc. 2007.

    Google Scholar 

  21. S. Rajendran, Mater. Forum. 17 (1993) 333.

    CAS  Google Scholar 

  22. G.Y. Guo and Y.L. Chen, J. Solid State Chem. 178 (2005) 1675.

    Article  CAS  Google Scholar 

  23. H. Adair, P. Denkewicz and S. Ten Huisen, J. Mater. Res. 5 (1990) 2698.

    Article  Google Scholar 

  24. J. Panpranot, N. Taochaiyaphum, B. Jongsomjit and P. Praserthdam, Catal. Commun. 7 (2006) 192.

    Article  CAS  Google Scholar 

  25. E. Djurado, P. Bouvier and G. Lucazeau, J. Solid State Chem. 149 (2000) 399.

    Article  CAS  Google Scholar 

  26. C. Ray, R. Saha and P. Pramanik, Mater. Lett. 57 (2002) 2140.

    Article  Google Scholar 

  27. C. Ray, K. Pati and P. Pramanik, J. Eur. Ceram. Soc. 20 (2000) 1289.

    Article  CAS  Google Scholar 

  28. A. Adamski, P. Jakubus and Z. Sojoka, Nukleonika 51 (2006) 27.

    Google Scholar 

  29. R. Narayanan, C. Tabor, M.A. El-Sayed, Top Catal. 48 (2008) 60.

    Article  CAS  Google Scholar 

  30. R. Narayanan and M. El-Sayed, Nano Lett. 4 (2004) 1343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abd El-Latif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd El-Latif, M.M., Showman, M.S., Ibrahim, A.M. et al. Optimizing the preparation parameters of nanocrystalline zirconia for catalytic applications. ACTA METALL SIN 26, 565–573 (2013). https://doi.org/10.1007/s40195-013-0008-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-013-0008-0

Key Words

Navigation