Skip to main content
Log in

Mechanical manipulation of solidification during laser beam welding of aluminum

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Mechanical vibrations affect the nucleation and grain growth conditions during solidification and are used as refinement method in the field of casting processes. This paper contributes to identify the influence of applied vibrations during laser beam welding of aluminum on the resulting grain structure. Therefore, it is investigated if the frequency amplitude factor, which suitably describes the grain refinement in casting processes, can be used to describe the grain refinement in laser deep penetration welding. The results show a local grain size reduction and an increase of the percentage of equiaxed grains due to applied excitation. A dependence of the resulting percentage of equiaxed grains on the product of frequency and amplitude cannot be observed within this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kou S (2003) Welding metallurgy. Wiley Inc, Hoboken

    Google Scholar 

  2. Campbell J (1981) Effects of vibration during solidification. Int Met Rev 2:71–108

    Google Scholar 

  3. Hellawell A, Liu S, Lu Z (1997) Dendrite fragmentation and the effects of fluid flow in castings. JOM 49(3):18–20. https://doi.org/10.1007/BF02914650

    Article  Google Scholar 

  4. Ruvalcaba D, Mathiesen RH, Eskin DG, Arnberg L, Katgerman L (2007) In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy. Acta Mater 55(13):4287–4292. https://doi.org/10.1016/j.actamat.2007.03.030

    Article  Google Scholar 

  5. Jose MJ, Kumar SS, Sharma A (2016) Vibration assisted welding processes and their influence on quality of welds. Sci Technol Weld Join 21(4):243–258. https://doi.org/10.1179/1362171815Y.0000000088

    Article  Google Scholar 

  6. Tewari SP, Shanker A (1994) Effects of longitudinal vibration on the mechanical properties of mild steel weldment. Proc Inst Mech Eng Part B J Eng Manuf 207:173–177

    Article  Google Scholar 

  7. Krajewski A, Włosiński W, Chmielewski T, Kołodziejczak P (2012) Ultrasonic-vibration assisted arc-welding of aluminum alloys. Bull Pol Acad Sci Tech Sci 60:841–852

    Google Scholar 

  8. Aoki S, Nishimura T, Hiroi T, Hirai S (2007) Reduction method for residual stress of welded joint using harmonic vibrational load. Nucl Eng Des 237(2):206–212. https://doi.org/10.1016/j.nucengdes.2006.06.004

    Article  Google Scholar 

  9. Gericke A, Banaschik R, Henkel K-M (2015) Zähigkeitserhöhung durch Schmelzbadvibration UP–geschweißter Feinkornbaustähle. Tagungsband DVS–Berichte 315:695–700 (in german)

    Google Scholar 

  10. Woizeschke P, Radel T, Nicolay P, Vollertsen F (2017) Laser deep penetration welding of an aluminum alloy with simultaneously applied vibrations. Lasers Manuf Mater Process 4(1):1–12. https://doi.org/10.1007/s40516-016-0032-9

    Article  Google Scholar 

  11. Govindarao P, Srinivasarao P, Gopalakrishna A, Sarkar MMM (2012) Effect of vibratory welding process to improve the mechanical properties of butt welded joints. Int J Mod Eng Res 2:2766–2770

    Google Scholar 

  12. Methong T, Poopat B (2013) The effect of ultrasonic vibration on properties of weld metal. Key Eng Mater 545:177–181. https://doi.org/10.4028/www.scientific.net/KEM.545.177

    Article  Google Scholar 

  13. Qinghua L, Ligong C, Chunzhen N (2008) Effect of vibratory weld conditioning on welded valve properties. Mech Mater 40(7):565–574. https://doi.org/10.1016/j.mechmat.2007.11.001

    Article  Google Scholar 

  14. Sakthivel P, Sivakumar P (2014) Effect of vibration in Tig and arc welding using AISI 316 stainless steel. Int J Eng Res Sci Technol 3:116–130

    Google Scholar 

  15. Venkannah S, Mazumder J (2009) Changes in laser weld bead geometry with the application of ultrasonic vibrations. In: Ao SI, Gelman L, Hukins DWL, Hunter A, Korsunsky AM (eds) Proceedings of the World Congress on Engineering Vol II. London, pp 1612–1617

  16. Wu W (2000) Influence of vibration frequency on solidification of weldments. Acta Metall 42:661–665

    Google Scholar 

  17. McCartney DG (1989) Grain refining of aluminium and its alloys using inoculants. Int Mater Rev 34(1):247–260. https://doi.org/10.1179/imr.1989.34.1.247

    Article  Google Scholar 

  18. David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34(1):213–245. https://doi.org/10.1179/imr.1989.34.1.213

    Article  Google Scholar 

  19. Schempp P, Rethmeier M (2015) Understanding grain refinement in aluminium welding. Weld World 59(6):767–784. https://doi.org/10.1007/s40194-015-0251-2

    Article  Google Scholar 

  20. Vander Voort GF (1984) Metallography, principles and practice. McGraw-Hill Book Co., NY ASM International

  21. Ganaha T, Pearce BP, Kerr HW (1980) Grain structures in aluminum alloy GTA welds. Metall Trans A 11(8):1351–1359. https://doi.org/10.1007/BF02653489

    Article  Google Scholar 

  22. Kou S, Le Y (1988) Welding parameters and the grain structure of weld metal—a thermodynamic consideration. Metall Trans A 19(4):1075–1082. https://doi.org/10.1007/BF02628392

    Article  Google Scholar 

  23. McInerney TJ, Madigan RB, Xu P, Cross CE (2006) Achieving grain refinement through weld pool oscillation. In: David SA, DebRoy T, Lippold, JC, Smartt HB, Vitek JM (eds) Trends in welding research: Proceedings of the 7th International Conference. ASM International, pp 17–22

  24. Whitaker IR, McCartney DG, Calder N, Steen WM (1993) Microstructural characterization of CO2 laser welds in the Al-Li based alloy 8090. J Mater Sci 28(20):5469–5478. https://doi.org/10.1007/BF00367817

    Article  Google Scholar 

  25. Feng-Quan W, Xiao-Ling H (2000) The influence of vibration & shock on the crystal growth during solidification. J Mater Sci 35(8):1907–1910. https://doi.org/10.1023/A:1004758217149

    Article  Google Scholar 

Download references

Acknowledgements

This work was accomplished within the Center of Competence for Welding of Aluminium Alloys – CentrAl. Funding by the Deutsche Forschungsgemeinschaft DFG (VO 530/85-1) is gratefully acknowledged. The author also thank A. Derksen for performing the experiments during his bachelor thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Radel.

Additional information

Recommended for publication by Commission IV - Power Beam Processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radel, T. Mechanical manipulation of solidification during laser beam welding of aluminum. Weld World 62, 29–38 (2018). https://doi.org/10.1007/s40194-017-0530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-017-0530-1

Keywords

Navigation