Skip to main content
Log in

Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

With the advent of integrated computational materials engineering, there is a drive to exchange statistical confidence in a design obtained from repeated experimentation with one developed through modeling and simulation. Since these models are often missing physics or include incomplete knowledge or simplifying assumptions into their mathematical construct, they may not capture the physical system or process adequately over the entire domain. This can lead to a systematic discrepancy, otherwise known as model misfit, between the model output and the system it represents over at least part of the domain. However, by accounting for this discrepancy in uncertainty analyses, reliable inference, and prediction on the model parameters and material behavior can be made despite the missing physics. The previous statement is contingent on two conditions: (1) the discrepancy is systematic, and (2) the structure of the discrepancy is well understood, which is required to minimize issues with non-identifiability among unknown model components. We illustrate these insights via a case study of inference and prediction in a phenomenological meso-scale VPSC crystal plasticity model, which does not contain physics describing the elastic regime of deformation. Inference is performed via a Bayesian approach enabled by posterior simulation. Posterior uncertainty about unknown model parameters takes into account observation error, uncertainty stemming from aleatoric sample-to-sample variability, and model form error. Posterior uncertainty in the unknown Voce hardening parameters is propagated to generate a distribution of the stress–strain response in both the elastic and plastic regimes. Additionally, posterior predictive distributions are simulated to establish uncertainty bounds for future unobserved data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The observant reader might notice some observations indicate a negative position due to the noise; while this example is not perfect, it serves the purpose of emphasizing the importance of considering model misfit in the analysis.

  2. The hardening rates are traditionally represented by \(\theta _{0}\) and \(\theta _{1}\) in the Voce hardening law. However, to avoid confusion with parameters in the statistical model, this notation is adopted as in [16].

  3. The code and required data to reproduce these results is made available on GitHub at https://github.com/mesoOSU/UQ.

References

  1. Honarmandi P, Paulson N, Arroyave R, Stan M (2019) Uncertainty quantification and propagation in calphad modelling. Model Simul Mater Sci Eng. https://doi.org/10.1088/1361-651X/ab08c3

    Article  Google Scholar 

  2. Paulson NH, Bocklund BJ, Otis RA, Liu Z-K, Stan M (2019) Quantified uncertainty in thermodynamic modeling for materials design. Acta Mater 174:9–15

    Article  CAS  Google Scholar 

  3. Olbricht W, Chatterjee ND, Miller K (1994) Bayes estimation: a novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part I: theory. Phys Chem Miner 21(1–2):36–49

    CAS  Google Scholar 

  4. Königsberger E (1991) Improvement of excess parameters from thermodynamic and phase diagram data by a sequential bayes algorithm. Calphad 15(1):69–78

    Article  Google Scholar 

  5. Malakhov DV (1997) Confidence intervals of calculated phase boundaries. Calphad 21(3):391–400

    Article  CAS  Google Scholar 

  6. Otis RA, Liu Z-K (2017) High-throughput thermodynamic modeling and uncertainty quantification for ICME. JOM 69(5):886–892

    Article  Google Scholar 

  7. Stan M, Reardon BJ (2003) A bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams. Calphad 27(3):319–323

    Article  CAS  Google Scholar 

  8. Kouchmeshky B, Zabaras N (2009) The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals. Comput Mater Sci 47(2):342–352

    Article  CAS  Google Scholar 

  9. Yeratapally SR, Glavicic MG, Argyrakis C, Sangid MD (2017) Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation. Reliab Eng Syst Saf 164:110–123

    Article  Google Scholar 

  10. Kouchmeshky B, Zabaras N (2010) Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Comput Mater Sci 48(2):213–227

    Article  CAS  Google Scholar 

  11. Koslowski M, Strachan A (2011) Uncertainty propagation in a multiscale model of nanocrystalline plasticity. Reliab Eng Syst Saf 96(9):1161–1170

    Article  Google Scholar 

  12. Fezi K, Krane MJM (2016) Uncertainty quantification of modelling of equiaxed solidification. In: IOP conference series: materials science and engineering, vol 143, p 012028. IOP Publishing

  13. Plotkowski A, Krane MJM (2017) Quantification of epistemic uncertainty in grain attachment models for equiaxed solidification. Metall Mater Trans B 48(3):1636–1651

    Article  CAS  Google Scholar 

  14. Sun G, Li G, Zhou S, Wei X, Yang X, Li Q (2011) Multi-fidelity optimization for sheet metal forming process. Struct Multidiscipl Optim 44(1):111–124

    Article  Google Scholar 

  15. Talapatra A, Boluki S, Duong T, Qian X, Dougherty E, Arróyave R (2018) Autonomous efficient experiment design for materials discovery with bayesian model averaging. Phys Rev Mater 2(11):113803

    Article  CAS  Google Scholar 

  16. Ricciardi DE, Chkrebtii OA, Niezgoda SR (2019) Uncertainty quantification for parameter estimation and response prediction. Integr Mater Manuf Innov 8(3):273–293

    Article  Google Scholar 

  17. Brynjarsdóttir J, O’Hagan A (2014) Learning about physical parameters: the importance of model discrepancy. Inverse Prob 30(11):114007

    Article  Google Scholar 

  18. Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Article  Google Scholar 

  19. Gilks WR, Richardson S, Spiegelhalter D (1995) Markov chain Monte Carlo in practice. Chapman and Hall/CRC, London

    Book  Google Scholar 

  20. Brooks S, Gelman A, Jones G, Meng X-L (2011) Handbook of markov chain monte carlo. CRC Press, London

    Book  Google Scholar 

  21. Robert C, Casella G (2013) Monte Carlo statistical methods. Springer, Berlin

    Google Scholar 

  22. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  23. Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika. https://doi.org/10.2307/2334940

    Article  Google Scholar 

  24. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  CAS  Google Scholar 

  25. Barnard J, McCulloch R, Meng X-L (2000) Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Stat Sin 10:1281–1311

    Google Scholar 

  26. O’Malley AJ, Zaslavsky AM (2008) Domain-level covariance analysis for multilevel survey data with structured nonresponse. Journal of the American Statistical Association 103(484):1405–1418

    Article  Google Scholar 

  27. Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63(3):425–464

    Article  Google Scholar 

  28. Rasmussen CE (2003) Gaussian processes in machine learning. In: Summer school on machine learning. Springer, pp 63–71

  29. Matérn B (1960) Spatial variation, vol 36 of. Lecture notes in statistics

  30. Bjørnstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8(1):53–70

    Article  Google Scholar 

  31. Fortmann RS (2012) Understanding the bias-variance tradeoff. I. http://scott.fortmann-roe.com/docs/BiasVariance.html (hämtad 2017-09-29)

  32. Tomé CN, Lebensohn RA (2009) Manual for code visco-plastic self-consistent (VPSC). Los Alamos National Laboratory, New Mexico

    Google Scholar 

  33. Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Metals 74:537–562

    CAS  Google Scholar 

  34. Voce E (1955) A practical strain hardening function. Metallurgia 51:219–226

    Google Scholar 

  35. Wang H, Wu PD, Tomé CN, Huang Y (2010) A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J Mech Phys Solids 58(4):594–612

    Article  CAS  Google Scholar 

  36. Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32:59–69

    Article  Google Scholar 

  37. Lebensohn RA, Castañeda PP, Brenner R, Castelnau O (2011) Full-field vs. homogenization methods to predict microstructure–property relations for polycrystalline materials. In: Computational methods for microstructure-property relationships. Springer, pp 393–441

  38. Zhao P, Low TSE, Wang Y, Niezgoda SR (2016) An integrated full-field model of concurrent plastic deformation and microstructure evolution: application to 3d simulation of dynamic recrystallization in polycrystalline copper. Int J Plast 80:38–55

    Article  CAS  Google Scholar 

  39. Roters F, Eisenlohr P, Kords C, Tjahjanto DD, Diehl M, Raabe D (2012) Damask: the düsseldorf advanced material simulation kit for studying crystal plasticity using an fe based or a spectral numerical solver. Procedia Iutam 3:3–10

    Article  Google Scholar 

  40. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater 58(4):1152–1211

    Article  CAS  Google Scholar 

  41. Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Math Phys Eng Sci 463(2088):3251–3269

    Article  Google Scholar 

Download references

Acknowledgements

S.R.N and D.E.R. received support from The Air Force Research Laboratory under Award FA8650-17-1-5277 “Ensemble predictions of material behavior for ICMSE for additive structures.” S.R.N. and O.A.C. received seed funding for this work through the Center for Emergent Materials: An NSF MRSEC (Chris Hammel PI, NSF Award DMR-0820414). Computing resources for the Ohio Supercomputer Center were provided through the Simulation Innovation and Modeling Center (SIMCenter) at Ohio State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Niezgoda.

Appendices

Appendix 1: MCMC Sampler Implementation

figure a

Appendix 2: Derivation of Full-Conditionals

Derivation of full conditional distributions over \(\delta ^{2}, {\varPsi }, R\) and \({\varDelta }\).

Independent Error Precision,\(\delta ^{s}\)

$$\begin{aligned} \begin{aligned}&f\left( \delta ^{2} \mid \{y^{[s]}\}_{s=1}^{S}, \{\theta ^{[s]}\}_{s=1}^{S},\theta , {\varDelta } \right) \propto \prod _{s=1}^{S} \; MVN_{N} \left( y^{[s]} \right. \\&\quad \left. - m \left( \theta ^{[s]} \right) ; \; \; {\varDelta },\delta ^{-2} {\mathbb {I}}_N\right) \; \mathrm{Gamma}\left( \delta ^{2}; \, a,b\right) , \; \; a,\, b> 0 \\&\quad \propto \det \left( \delta ^{2} {\mathbb {I}}_N\right) ^{\frac{S}{2}}\exp \left\{ \right. \\&\qquad \left. -\frac{1}{2}\sum _{s=1}^{S} \left\Vert y^{[s]}-m\left( \theta ^{[s]}\right) - {\varDelta }\right\Vert _{2}^{2}(\delta ^2 {\mathbb {I}}_N) \right\} \; \left( \delta ^{2}\right) ^{a-1}\exp \left\{ -b\delta ^{2}\right\} , \; \; a, \, b> 0 \\&\quad =\left( \delta ^{2}\right) ^{\left( \frac{SN}{2} + a - 1\right) }\exp \left\{ -\delta ^{2}\left( b \right. \right. \\&\qquad \left. \left. + \frac{1}{2}\sum _{s=1}^{S}\left\Vert y^{[s]} - m\left( \theta ^{[s]}\right) - {\varDelta } \right\Vert _{2}^{2}\right) \right\} , \; \; a,\, b> 0 \\&\quad \propto \mathrm{Gamma}\left( \delta ^{2};\, \frac{SN}{2} + a, b\right. \\&\qquad \left. + \frac{1}{2}\sum _{s=1}^{S}\left\Vert y^{[s]} - m\left( \theta ^{[s]}\right) - {\varDelta }\right\Vert _{2}^{2}\right) , \; \; a,\, b > 0 \end{aligned} \end{aligned}$$
(29)

Full Error Precision Matrix,\({\varPsi }\)

$$\begin{aligned} \begin{aligned}&f({\varPsi } \mid \{y^{[s]}\}_{s=1}^{S}, \{\theta ^{[s]}\}_{s=1}^{S},\theta , {\varDelta } ) \propto \prod _{s=1}^{S} \; MVN_{N}\left( y^{[s]} \right. \\&\qquad \left. - m\left( \theta ^{[s]}\right) ; \; \; {\varDelta }, \, {\varPsi }^{-1}\right) \; \mathrm{Wishart}_{N}\left( {\varPsi }; \, V_{0},v_{0}\right) , \; v_{0} \ge N + 1 \\&\quad \propto \det ({\varPsi })^{\frac{S}{2}}\exp \left\{ \right. \\&\qquad \left. -\frac{1}{2}\sum _{s=1}^{S}\left\Vert y^{[s]} - m\left( \theta ^{[s]}\right) - {\varDelta } \right\Vert _{2}^{2}\left( {\varPsi }\right) \right\} \, \det ({\varPsi })^{(v_{0}-N-1)/2}\exp \left\{ \right. \\&\qquad \left. -\hbox {Tr}\left( \frac{V_{0}^{-1}{\varPsi }}{2}\right) \right\} , \; v_{0} \ge N + 1 \\&\quad \propto \det ({\varPsi })^{(v_{0}-N-1+S)/2}\exp \left\{ -\frac{1}{2}\hbox {Tr}\left( {\varPsi }\left[ V_{0}^{-1}\right. \right. \right. \\&\qquad \left. \left. \left. + \sum _{s=1}^{S}\left\Vert y^{[s]} - m\left( \theta ^{[s]}\right) - {\varDelta } \right\Vert _{2}^{2}\right] \right) \right\} , \; v_{0} \ge N + 1\\&\quad \propto \mathrm{Wishart}_{N}\left( {\varPsi }; \left[ V_{0}^{-1} \right. \right. \\&\qquad \left. \left. + \sum _{s=1}^{S}\left\Vert y^{[s]} - m\left( \theta ^{[s]}\right) - {\varDelta } \right\Vert _{2}^{2}\right] ^{-1}, \, v_{0} + S\right) , \; v_{0} \ge N + 1 \end{aligned} \end{aligned}$$
(30)

Random Effects Precision (\({\varLambda }\)) Decomposed Correlation, R

$$\begin{aligned} \begin{aligned}&f(R \mid \{y^{[s]}\}_{s=1}^{S},\{\theta ^{[s]}\}_{s=1}^{S},\theta ) \\&\quad \propto \left\{ \prod _{s=1}^{S} \; \mathrm{MVN}_{D}\left( \theta ^{[s]}; \; \; \theta , \, {\varLambda }^{-1}\right) \right\} \; \mathrm{Wishart}_{D}\left( R; \, R_{o},r_{o}\right) , \; r_{o} \ge D + 1 \\&\quad \propto \det ({\varLambda })^{\frac{S}{2}}\exp \left\{ \right. \\&\qquad \left. -\frac{1}{2}\sum _{s=1}^{S}\left\Vert \theta ^{[s]} - \theta \right\Vert _{2}^{2}\left( {\varLambda }\right) \right\} \, \det (R)^{(r_{o}-D-1)/2}\exp \left\{ \right. \\&\qquad \left. -\hbox {Tr}\left( \frac{R_{o}^{-1}R}{2}\right) \right\} , \; r_{o} \ge D + 1 \\&\quad \propto \det (R)^{\frac{1}{2}(S + r_{o} - D - 1 ) } \exp \left\{ \right. \\&\qquad -\frac{1}{2}\hbox {Tr}\left( R\left[ R_{o}^{-1} \right. \right. \\&\qquad \left. \left. \left. + \text{ diag }(t)\left( \sum _{s=1}^{S}\left\Vert \theta ^{[s]} - \theta \right\Vert _{2}^{2}\right) \text{ diag }(t)\right] \right) \right\} , \; r_{o} \ge D + 1\\&\quad \propto \mathrm{Wishart}_{D}\left( R; \left[ R_{o}^{-1} \right. \right. \\&\qquad \left. \left. + \text{ diag }(t)\left( \sum _{s=1}^{S}\left\Vert \theta ^{[s]} - \theta \right\Vert _{2}^{2}\right) \text{ diag }(t)\right] ^{-1}, \, r_{o} + S\right) , \; r_{o} \ge D + 1 \end{aligned} \end{aligned}$$
(31)

Discrepancy,\({\varDelta }\)

$$\begin{aligned} \begin{aligned}&f({\varDelta } \mid {\varPsi }, \{y^{[s]}\}_{s=1}^{S},\{\theta ^{[s]}\}_{s=1}^{S},\theta ) \\&\quad \propto \prod _{s=1}^{S} \; \mathrm{MVN}_{N}\left( y^{[s]} - m\left( \theta ^{[s]}\right) ; \, {\varDelta } ,{\varPsi }^{-1}\right) \; MVN_{N}\left( {\varDelta }; \, 0, {\varGamma } \right) \\&\quad \text {which is just a Normal--Normal hierarchy with full-conditional}, \\&\quad {\varDelta } \mid \{y^{[s]}\}_{s=1}^{S},\{\theta ^{[s]}\}_{s=1}^{S},{\varPsi } \sim \mathrm{MVN}_{N}({\varDelta }; \; \; m,V) \\&\quad f\left( {\varDelta } \mid {\varPsi }, \{y^{[s]}\}_{s=1}^{S},\{\theta ^{[s]}\}_{s=1}^{S},\theta \right) \propto \mathrm{MVN}_{N}({\varDelta }; \; \; m,V)\\&\quad \text {where,}\\&\quad m = ({\varGamma }^{-1} + N{\varPsi })^{-1}N{\varPsi }\left( \overline{y^{[s]} - m(\theta ^{[s]}})\right) \\&\quad V = ({\varGamma }^{-1} + N{\varPsi })^{-1}. \end{aligned} \end{aligned}$$
(32)

Appendix 3: Parameter Correlation

See Tables 3 and 4.

Table 3 Element-wise posterior correlation for a representative random effect from case study I
Table 4 Element-wise posterior correlation for the overall effect from case study I

Appendix 4: Additional Figures

Marginal posterior distributions: Fig. 12 compares the distributions between the overall (dashed lines) and random effects (solid lines).

Fig. 12
figure 12

Scaled marginal posterior densities from case study I for random effects (solid lines) and the overall effect (dashed lines) for each Voce hardening parameter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricciardi, D.E., Chkrebtii, O.A. & Niezgoda, S.R. Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework. Integr Mater Manuf Innov 9, 181–198 (2020). https://doi.org/10.1007/s40192-020-00176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-020-00176-2

Keywords

Mathematics Subject Classification

Navigation