Skip to main content
Log in

Big Data-Driven Assessment of Proposals to Improve Enterprise Flexibility Through Control Options Untested in Practice

  • Original Research
  • Published:
Global Journal of Flexible Systems Management Aims and scope Submit manuscript

Abstract

The study discusses how the process information reserves can be used for improving production flexibility on the basis of production component variation control. Building upon the assumption that the data in question describe the functions of the production components as those experience perturbations, we submit that it may be possible to predict the productivity and economic efficiency for new, previously unused control options. We elaborate on the production components that ensure production flexibility, approaching them as a highly autonomous holon. We determine the conditions that make it possible to analyze the holon control options in isolation from controlling all other components. We also suggest a solution to the problem of predicting the employees’ impact on production. Our suggestion is based on limiting the types of impact accessible to a human operator. The study looks at the reasons behind the uncertainty of production control simulation modeling results, which stem from the peculiarities of the data collected. We propose a criterion for assessing the impact of uncertainty on the productivity indicators’ variation. This study offers a systemic overview of the aspects of a production simulation aimed at assessing the impact of uncertainty on productivity predictions. As an example, we review how uncertainty affects the variation of coke consumption and productivity of a blast furnace, which is ensured by selecting a suitable option for iron ore sinter quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Baykasoǧlu, A., Topaloǧlu, S., & Senyüzlüler, F. (2016). Manufacturing cell formation with flexible processing capabilities and worker assignment: Comparison of constraint programming and integer programming approaches. Proceedings of the Institution of Mechanical Engineers, Part b: Journal of Engineering Manufacture, 232(11), 2054–2068. https://doi.org/10.1177/0954405416682281

    Article  Google Scholar 

  • Bello-Pintado, A., Marco, T. G., & Zouaghi, F. (2019). Product/process definition, technology adoption and workforce qualification: Impact on performance. International Journal of Production Research, 57(1), 200–215. https://doi.org/10.1080/00207543.2018.1468096

    Article  Google Scholar 

  • Budylina, E. A., Garkina, I. A., Danilov, A. M., & Tyukalov, D. E. (2015). Parametric identification of human-machine system with random effects and interferences. Modern Problems of Science and Education, 1–1, 74. (in Rus.).

    Google Scholar 

  • Chencov, A. V., Chesnokov, Y. A., & Shavrin, S. V. (2003). Balance, logical and statistic model of the blast-furnace process. Ural Branch of the Russian Academy of Sciences. (in Rus.).

    Google Scholar 

  • Contador, J. C., Satyro, W. C., Contador, J. L., & de Spinola, M. (2020). Flexibility in the Brazilian Industry 4.0: Challenges and opportunities. Global Journal of Flexible Systems Management, 21, 15–31. https://doi.org/10.1007/s40171-020-00240-y

    Article  Google Scholar 

  • Da Costa, M. B., Dos Santos, L. M. A. L., Schaefer, J. L., Baierle, I. C., & Nara, E. O. B. (2019). Industry 4.0 technologies basic network identification. Scientometrics, 121, 977–994. https://doi.org/10.1007/s11192-019-03216-7

    Article  Google Scholar 

  • Daneev, A. V., Daneev, R. A., & Sizykh, V. N. (2017). Fuzzy control of the human-machine system based on an entropy approach and an anthropocentric model of the operator. Modern Technologies. System Analysis. Modeling, 56(4), 144–151. (in Rus.).

    Article  Google Scholar 

  • Derigent, W., Cardin, O., & Trentesaux, D. (2020). Industry 4.0: contributions of holonic manufacturing control architectures and future challenges. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01532-x

    Article  Google Scholar 

  • Dey, S., Sharma, R. R. K., & Pandey, B. K. (2019). Relationship of manufacturing flexibility with organizational strategy. Global Journal of Flexible Systems Management, 20, 237–256. https://doi.org/10.1007/s40171-019-00212-x

    Article  Google Scholar 

  • Dmitriev, A. N., Vit’kina, G. Y., & Chesnokov, Y. A. (2015). Development of methodological basis for analysis of iron-ore raw material and coke quality influence on technical and economic performance of blast-furnace melting process. In Collection of works: Physical chemistry and technology in metallurgy (pp. 309–314). Ural Branch of the Russian Academy of Sciences, Institute of Metallurgy (in Rus.).

  • Doyle-Kent, M., & Kopacek, P. (2020). Industry 5.0: Is the Manufacturing Industry on the Cusp of a New Revolution?. In: N. Durakbasa & M. Gençyılmaz (Eds.), Proceedings of the International Symposium for Production Research 2019. ISPR 2019, ISPR 2019. Lecture notes in mechanical engineering. Springer. https://doi.org/10.1007/978-3-030-31343-2_38

  • Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource-based view and big data culture. British Journal of Management, 30(2), 341–361.

    Article  Google Scholar 

  • Eidelwein, F., Piran, F. A. S., Lacerda, D. P., Dresch, A., & Rodrigues, L. H. (2018). Exploratory analysis of modularization strategy based on the theory of constraints thinking process. Global Journal of Flexible Systems Management, 19(2), 111–122.

    Article  Google Scholar 

  • Evans, S., & Bahrami, H. (2020). Super-flexibility in practice: Insights from a crisis. Global Journal of Flexible Systems Management, 21, 207–214. https://doi.org/10.1007/s40171-020-00246-6

    Article  Google Scholar 

  • Eyers, D. R., Potter, A. T., Gosling, J., & Naim, M. M. (2018). The flexibility of industrial additive manufacturing systems. International Journal of Operations & Production Management, 38(12), 2313–2343. https://doi.org/10.1108/IJOPM-04-2016-0200

    Article  Google Scholar 

  • Ghasemi, M., & Amyot, D. (2020). From event logs to goals: A systematic literature review of goal-oriented process mining. Requirements Engineering, 25, 67–93. https://doi.org/10.1007/s00766-018-00308-3

    Article  Google Scholar 

  • Gladskih, V. I., Lekin, V. P., Hasanov, N. I., Usherov, A. I., Polushkin, M. E., & Usherova, E. V. (2007). Current procedures for preparation of batch materials for the agglomeration at MISW OJSC. Vestnik of Nosov Magnitogorsk State Technical University, 3, 29–30. (in Rus.).

    Google Scholar 

  • Hussain, M. S., & Ali, M. (2019). A multi-agent based dynamic scheduling of flexible manufacturing systems. Global Journal of Flexible Systems Management, 20(3), 267–290. https://doi.org/10.1007/s40171-019-00214-9

    Article  Google Scholar 

  • Jain, V., & Soni, V. K. (2018). Modeling and analysis of FMS performance variables byfuzzy TISM. Journal of Modelling in Management, 14(1), 2–30. https://doi.org/10.1108/JM2-03-2018-0036

    Article  Google Scholar 

  • Jimenez, J.-F., Zambrano-Rey, G., Aguirre, S., & Trentesaux, D. (2018). Using process-mining for understating the emergence of self-organizing manufacturing systems. IFAC Papers on Line, 51(11), 1618–1623.

    Article  Google Scholar 

  • Kern, S., & Scholz, J. (2020). Agent-based simulation for indoor manufacturing environments—Evaluating the effects of spatialization. In P. Kyriakidis, D. Hadjimitsis, D. Skarlatos, & A. Mansourian (Eds.), Geospatial technologies for local and regional development. AGILE 2019. Lecture notes in geoinformation and cartography. Springer. https://doi.org/10.1007/978-3-030-14745-7_17

    Chapter  Google Scholar 

  • Khodabandelou, G., Hug, C., Deneckère, R., & Salinesi, C., et al. (2013). Process mining Versus intention mining. In S. Nurcan (Ed.), Enterprise, business-process and information systems modelling. BPMDS 2013, EMMSAD 2013. Lecture notes in business information processing, 147. Springer. https://doi.org/10.1007/978-3-642-38484-4_33

    Chapter  Google Scholar 

  • Khodaygan, S. (2019). Meta-model based multi-objective optimisation method for computer-aided tolerance design of compliant assemblies. International Journal of Computer Integrated Manufacturing, 32(1), 27–42. https://doi.org/10.1080/0951192X.2018.1543953

    Article  Google Scholar 

  • Khorasani, S. T. (2018). A robust optimization model for supply chain in agile and flexible mode based on variables of uncertainty. Global Journal of Flexible Systems Management, 19, 239–253. https://doi.org/10.1007/s40171-018-0191-y

    Article  Google Scholar 

  • Kluz, R., & Antosz, K. (2019). Simulation of flexible manufacturing systems as an element of education towards Industry 4.0. In J. Trojanowska, O. Ciszak, J. Machado, & I. Pavlenko (Eds.), Advances in manufacturing II. MANUFACTURING 2019. Lecture notes in mechanical engineering. Springer. https://doi.org/10.1007/978-3-030-18715-6_28

    Chapter  Google Scholar 

  • Kokkas, A., & Vosniakos, G.-C. (2019). An Augmented Reality approach to factory layout design embedding operation simulation. International Journal on Interactive Design and Manufacturing, 13, 1061–1071. https://doi.org/10.1007/s12008-019-00567-6

    Article  Google Scholar 

  • Králik, M., Jerz, V., & Paštéka, M. (2020). Optimization of the Machine and Device Layout Solution in a Specific Company Production. In: N. Durakbasa & M. Gençyılmaz (Eds.), Proceedings of the International Symposium for Production Research 2019. ISPR 2019, ISPR 2019. Lecture notes in mechanical engineering. Springer. https://doi.org/10.1007/978-3-030-31343-2_8.

  • Kumar, S., Raj, T., & Attri, R. (2019). Mapping structural relationships among the critical factors of FMS flexibility. Journal of Advanced Manufacturing Systems, 18(3), 469–485. https://doi.org/10.1142/S0219686719500252

    Article  Google Scholar 

  • Lechuga, G. P., & Sánchez, F. M. (2019). Modeling and optimization of flexible manufacturing systems: A stochastic approach. In P. Vasant, I. Zelinka, & G. W. Weber (Eds.), Intelligent Computing & Optimization. ICO 2018. Advances in intelligent systems and computing, 866. Springer. https://doi.org/10.1007/978-3-030-00979-3_57

    Chapter  Google Scholar 

  • Leventsov, V. A., Radaev, A. E., & Nikolaevskiy, N. N. (2017). The aspects of the “industry 4.0” concept within production process design. St. Petersburg State Polytechnical University Journal Economics, 10(1), 19–31. (in Rus.).

    Google Scholar 

  • Markov, D. A., & Markova, N. A. (2016). Quick response manufacturing as a concept of an enterprise competitiveness increase. PNRPU Sociology and Economics Bulletin, 2, 182–192. (in Rus.).

    Google Scholar 

  • Martynov, V. I., & Zabelin, B. F. (2016). On modern understanding of adaptability of production systems. Economic Vector, 4(1), 32–35. (in Rus.).

    Google Scholar 

  • Mikalef, P., & Krogstie, J. (2020). Examining the interplay between big data analytics and contextual factors in driving process innovation capabilities. European Journal of Information Systems, 29(3), 260–287.

    Article  Google Scholar 

  • Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169.

    Article  Google Scholar 

  • Nausch M., Schumacher A., & Sihn W. (2020). Assessment of organizational capability for data utilization—A readiness model in the context of Industry 4.0. In: N. Durakbasa & M. Gençyılmaz (Eds.), Proceedings of the International Symposium for Production Research 2019. ISPR 2019, ISPR 2019. Lecture notes in mechanical engineering. Springer. https://doi.org/10.1007/978-3-030-31343-2_21

  • Ottogalli, K., Rosquete, D., Amundarain, A., Aguinaga, I., & Borro, D. (2019). Flexible framework to model Industry 4.0 processes for virtual simulators. Applied Sciences, 9(23), 4983. https://doi.org/10.3390/app9234983

    Article  Google Scholar 

  • Piran, F. A. S., De Paris, A., Lacerda, D. P., Camargo, L. F. R., Serrano, R., & Cassel, R. A. (2020). Overall equipment effectiveness: Required but not enough—An analysis integrating overall equipment effect and data envelopment analysis. Global Journal of Flexible Systems Management, 21, 191–206. https://doi.org/10.1007/s40171-020-00238-6

    Article  Google Scholar 

  • Potapova, T. B. (2003). “Axioms” of automated process and enterprise control systems’ integration. Automation in Industry, 9, 31–35. (in Rus.).

    Google Scholar 

  • Rodionova, V. N., & Turovets, O. G. (2016). The comprehensive assessment and planning of organizational flexibility of the industrial system. Organizer of Production, 70(3), 18–27. (in Rus.).

    Google Scholar 

  • Ryabchikov, M. Y. (2018). Metallurgical agglomerate quality management with the account of its impact on the blast-furnace process efficiency. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3785–3794.

    Article  Google Scholar 

  • Ryabchikov, M. Y., & Grebennikova, V. V. (2013). Simulation of the combined effect of production factors on metallurgical sinter mechanical strength. Metallurgist, 57(3–4), 274–283.

    Article  Google Scholar 

  • Ryabchikov, M. Y., Grebennikova, V. V., & Ryabchikova, E. S. (2013). Modelling of the metallurgical agglomerate strength after the restitution in order to organize its quality continuous control. Metallurgical Production Theory and Technology, 1(13), 10–12. (in Rus.).

    Google Scholar 

  • Ryabchikov, M. Y., Grebennikova, V. V., & Ryabchikova, E. S. (2014b). Control over metallurgical sinter quality using reducibility model. Steel, 2, 4–8. (in Rus.).

    Google Scholar 

  • Ryabchikov, M. Y., Grebennikova, V. V., & Ryabchikova, E. S. (2018). Managing iron and steel works ore base formation through integration of the blast-furnace process and agglomerate failure models. Journal of Siberian Federal University Engineering & Technologies, 11(2), 168–180. (in Rus.).

    Article  Google Scholar 

  • Ryabchikov, M. Y., Grebennikova, V. V., Ryabchikova, E. S., & Bogdanov, N. V. (2016b). Problems of quality management of metallurgical agglomerate on the basis of results of operational X-ray fluorescent analyses. Quality and Life, 2(10), 13–20. (in Rus.).

    Google Scholar 

  • Ryabchikov, M. Y., Grebennikova, V. V., Ryabchikova, E. S., & Bogdanov, N. V. (2016c). Failure of metallurgical sinter. Steel in Translation, 3(46), 173–179.

    Article  Google Scholar 

  • Ryabchikov, M. Y., Parsunkin, B. N., & Ryabchikova, E. S. (2014a). Choice of the technical procedures of the ladle furnace operation using generalized evaluations of quality and process expenditures. Chernye Metally, 996(12), 28–43. (in Rus.).

    Google Scholar 

  • Ryabchikov M. Y., Ryabchikova E. S., & Grebennikova, V. V. (2016a). Automated support system for administration of steel processing in the ladle furnace with a function of process staff training. In 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1–6. https://doi.org/10.1109/ICIEAM.2016.7910909

  • Sahnoun, M., Xu, Y., Belgacem, B., Imen, B., David, B., & Louis, A. (2019). Fractal modeling of Cyber physical production system using multi-agent systems. International Conference on Applied Automation and Industrial Diagnostics (ICAAID), 2019, 1–6. https://doi.org/10.1109/ICAAID.2019.8934976

    Article  Google Scholar 

  • Samiei, E., & Habibi, J. (2020). The mutual relation between enterprise resource planning and knowledge management: A review. Global Journal of Flexible Systems Management, 21, 53–66. https://doi.org/10.1007/s40171-019-00229-2

    Article  Google Scholar 

  • Sangiovanni-Vincentelli, A., Damm, W., & Passerone, R. (2012). Taming Dr. Frankenstein: Contract-based design for cyber-physical systems. European Journal of Control, 3, 217–238. https://doi.org/10.3166/EJC.18.217-238

    Article  Google Scholar 

  • Singh, R. K., Modgil, S., & Acharya, P. (2019). Assessment of supply chain flexibility using system dynamics modeling. Global Journal of Flexible Systems Management, 20, 39–63. https://doi.org/10.1007/s40171-019-00224-7

    Article  Google Scholar 

  • Şirin Uyan, R., & Öner, A. (2020). Analysis of a Dedicated Flexible Manufacturing System with Closed Loop Layout: A Case Study in Production of Electro-Mechanical Products. In: N. Durakbasa & M. Gençyılmaz (Eds.), Proceedings of the International Symposium for Production Research 2019. ISPR 2019, ISPR 2019. Lecture notes in mechanical engineering. Springer. https://doi.org/10.1007/978-3-030-31343-2_7

  • Slavin, R. (2000). Bottom-up integration as the only way of improving production efficiency. World of Computer Automation, 1, 17–22. (in Rus.).

    Google Scholar 

  • Solke, N. S., & Singh, T. P. (2018). Analysis of relationship between manufacturing flexibility and lean manufacturing using structural equation modelling. Global Journal of Flexible Systems Management, 19, 139–157. https://doi.org/10.1007/s40171-017-0181-5

    Article  Google Scholar 

  • Srinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10), 1849–1867.

    Article  Google Scholar 

  • Sushil. (2017). Multi-criteria valuation of flexibility initiatives using integrated TISM–IRP with a big data framework. Production Planning & Control, 28(11–12), 999–1010.

    Article  Google Scholar 

  • Sushil. (2018). Flexible systems methodology: A mixed-method/multi-method research approach. Global Journal of Flexible Systems Management, 19, 109–110. https://doi.org/10.1007/s40171-018-0190-z

    Article  Google Scholar 

  • Volkov, Y. V., Sokolov, I. V., & Smirnov, A. A. (2006). Strategy for Ural feedstock supply exploitation. Mining Industry, 4, 57–62. (in Rus.).

    Google Scholar 

  • Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517–527. https://doi.org/10.1016/j.jmsy.2015.04.008

    Article  Google Scholar 

  • Yakovis, L. M. (2014). Improving the intelligence level of production control systems: issues and prospects. In 12th Russian National Conference on Control Issues. V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 4380–4391 (in Rus.).

  • Yin, Y., Stecke, K. E., & Li, D. (2017). The evolution of production systems from Industry 2.0 through Industry 4.0. International Journal of Production Research. https://doi.org/10.1080/00207543.2017.1403664

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their suggestions that improved the content of this paper.

Funding

The authors have no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Yurievich Ryabchikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabchikov, M.Y., Ryabchikova, E.S. Big Data-Driven Assessment of Proposals to Improve Enterprise Flexibility Through Control Options Untested in Practice. Glob J Flex Syst Manag 23, 43–74 (2022). https://doi.org/10.1007/s40171-021-00287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40171-021-00287-5

Keywords

Navigation