Skip to main content

Advertisement

Log in

The Regulation of Notch Signaling in Retinal Development and Regeneration

  • Organ Development and Regeneration (D Shin and U Apte, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Notch signaling is an important component of retinal progenitor cell maintenance and Muller glia (MG) specification during development, and its manipulation may be critical for allowing MG to re-enter the cell cycle and regenerate neurons in adults. In mammals, MG respond to retinal injury by undergoing a gliotic response rather than a regenerative one. Understanding the complexities of Notch signaling may allow for strategies that enhance regeneration over gliosis.

Recent Findings

Notch signaling is regulated at multiple levels and is interdependent with various other signaling pathways in both the receptor- and ligand-expressing cells. The precise spatial and temporal patterning of Notch components is necessary for proper retinal development. Regenerative species undergo a dynamic regulation of Notch signaling in MG upon injury, whereas non-regenerative species fail to productively regulate Notch.

Summary

Notch signaling is malleable, such that the altered composition of growth and transcription factors in the developing and mature retinas results in different Notch-mediated responses. Successful regeneration will require the manipulation of the retinal environment to foster a dynamic rather than static regulation of Notch signaling in concert with other reprogramming and differentiation factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995;268(5208):225–32.

    Article  CAS  PubMed  Google Scholar 

  2. Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–73. https://doi.org/10.1242/dev.01074.

    Article  CAS  PubMed  Google Scholar 

  3. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    Article  CAS  PubMed  Google Scholar 

  4. Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development. 2013;140(4):689–704. https://doi.org/10.1242/dev.080614.

    Article  CAS  PubMed  Google Scholar 

  5. Cagan RL, Ready DF. Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev. 1989;3(8):1099–112.

    Article  CAS  PubMed  Google Scholar 

  6. Baker R, Schubiger G. Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila. Development. 1996;122(2):617–26.

    CAS  PubMed  Google Scholar 

  7. Reynolds-Kenneally J, Mlodzik M. Notch signaling controls proliferation through cell-autonomous and non-autonomous mechanisms in the Drosophila eye. Dev Biol. 2005;285(1):38–48. https://doi.org/10.1016/j.ydbio.2005.05.038.

    Article  CAS  PubMed  Google Scholar 

  8. Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci. 2006;7(2):93–102. https://doi.org/10.1038/nrn1847.

    Article  CAS  PubMed  Google Scholar 

  9. Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MA, et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell. 1990;61(3):523–34.

    Article  CAS  PubMed  Google Scholar 

  10. Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A. 1998;95(14):8108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5(2):197–206.

    Article  CAS  PubMed  Google Scholar 

  12. Rooke J, Pan D, Xu T, Rubin GM. KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science. 1996;273(5279):1227–31.

    Article  CAS  PubMed  Google Scholar 

  13. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000;5(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  14. Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell. 2003;4(1):67–82.

    Article  CAS  PubMed  Google Scholar 

  15. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398(6727):518–22. https://doi.org/10.1038/19083.

    Article  PubMed  Google Scholar 

  16. Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S. Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet. 1992;2(2):119–27. https://doi.org/10.1038/ng1092-119.

    Article  CAS  PubMed  Google Scholar 

  17. Struhl G, Adachi A. Nuclear access and action of notch in vivo. Cell. 1998;93(4):649–60.

    Article  CAS  PubMed  Google Scholar 

  18. Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–6. https://doi.org/10.1038/30756.

    Article  CAS  PubMed  Google Scholar 

  19. Fortini ME, Artavanis-Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell. 1994;79(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  20. Smoller D, Friedel C, Schmid A, Bettler D, Lam L, Yedvobnick B. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 1990;4(10):1688–700.

    Article  CAS  PubMed  Google Scholar 

  21. Petcherski AG, Kimble J. Mastermind is a putative activator for Notch. Curr Biol. 2000;10(13):R471–3.

    Article  CAS  PubMed  Google Scholar 

  22. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000;26(4):484–9. https://doi.org/10.1038/82644.

    Article  CAS  PubMed  Google Scholar 

  23. Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development. 2007;134(7):1243–51. https://doi.org/10.1242/dev.000786.

    Article  CAS  PubMed  Google Scholar 

  24. Goldman D. Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15(7):431–42. https://doi.org/10.1038/nrn3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dorsky RI, Rapaport DH, Harris WA. Xotch inhibits cell differentiation in the Xenopus retina. Neuron. 1995;14(3):487–96.

    Article  CAS  PubMed  Google Scholar 

  26. Lindsell CE, Boulter J, di Sibio G, Gossler A, Weinmaster G. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci. 1996;8(1):14–27. https://doi.org/10.1006/mcne.1996.0040.

    Article  CAS  PubMed  Google Scholar 

  27. Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL. rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron. 2000;26(2):383–94.

    Article  CAS  PubMed  Google Scholar 

  28. Jadhav AP, Cho SH, Cepko CL. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A. 2006;103(50):18998–9003. https://doi.org/10.1073/pnas.0608155103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernardos RL, Lentz SI, Wolfe MS, Raymond PA. Notch-Delta signaling is required for spatial patterning and Muller glia differentiation in the zebrafish retina. Dev Biol. 2005;278(2):381–95. https://doi.org/10.1016/j.ydbio.2004.11.018.

    Article  CAS  PubMed  Google Scholar 

  30. Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron. 2008;58(1):52–64. https://doi.org/10.1016/j.neuron.2008.02.014.

    Article  CAS  PubMed  Google Scholar 

  31. Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development. 2006;133(13):2467–76. https://doi.org/10.1242/dev.02403.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, Kageyama R. Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci U S A. 2007;104(27):11292–7. https://doi.org/10.1073/pnas.0701837104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palavicini JP, Lloyd BN, Hayes CD, Bianchi E, Kang DE, Dawson-Scully K, et al. RanBP9 plays a critical role in neonatal brain development in mice. PLoS One. 2013;8(6):e66908. https://doi.org/10.1371/journal.pone.0066908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoo KW, Thiruvarangan M, Jeong YM, Lee MS, Maddirevula S, Rhee M, et al. Mind bomb-binding partner RanBP9 plays a contributory role in retinal development. Mol Cells. 2017; 10.14348/molcells.2017.2308.

  35. Yoo KW, Kim EH, Jung SH, Rhee M, Koo BK, Yoon KJ, et al. Snx5, as a mind bomb-binding protein, is expressed in hematopoietic and endothelial precursor cells in zebrafish. FEBS Lett. 2006;580(18):4409–16. https://doi.org/10.1016/j.febslet.2006.07.009.

    Article  CAS  PubMed  Google Scholar 

  36. Olena AF, Rao MB, Thatcher EJ, Wu SY, Patton JG. miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development. Dev Biol. 2015;400(1):72–81. https://doi.org/10.1016/j.ydbio.2015.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang S, Chen X, Tang M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol Rep. 2014;32(6):2824–30. https://doi.org/10.3892/or.2014.3478.

    Article  CAS  PubMed  Google Scholar 

  38. Hou BH, Jian ZX, Cui P, Li SJ, Tian RQ, Ou JR. miR-216a may inhibit pancreatic tumor growth by targeting JAK2. FEBS Lett. 2015;589(17):2224–32. https://doi.org/10.1016/j.febslet.2015.06.036.

    Article  CAS  PubMed  Google Scholar 

  39. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y. Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol. 2004;6(6):547–54. https://doi.org/10.1038/ncb1138.

    Article  CAS  PubMed  Google Scholar 

  40. Groot AJ, Vooijs MA. The role of Adams in Notch signaling. Adv Exp Med Biol. 2012;727:15–36. https://doi.org/10.1007/978-1-4614-0899-4_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, et al. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci U S A. 2003;100(13):7638–43. https://doi.org/10.1073/pnas.1230693100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toonen JA, Ronchetti A, Sidjanin DJ. A disintegrin and metalloproteinase10 (ADAM10) regulates NOTCH signaling during early retinal development. PLoS One. 2016;11(5):e0156184. https://doi.org/10.1371/journal.pone.0156184.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Esteve P, Sandonis A, Ibanez C, Shimono A, Guerrero I, Bovolenta P. Secreted frizzled-related proteins are required for Wnt/beta-catenin signalling activation in the vertebrate optic cup. Development. 2011;138(19):4179–84. https://doi.org/10.1242/dev.065839.

    Article  CAS  PubMed  Google Scholar 

  44. Esteve P, Sandonis A, Cardozo M, Malapeira J, Ibanez C, Crespo I, et al. SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci. 2011;14(5):562–9. https://doi.org/10.1038/nn.2794.

    Article  CAS  PubMed  Google Scholar 

  45. Holly VL, Widen SA, Famulski JK, Waskiewicz AJ. Sfrp1a and Sfrp5 function as positive regulators of Wnt and BMP signaling during early retinal development. Dev Biol. 2014;388(2):192–204. https://doi.org/10.1016/j.ydbio.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  46. Borday C, Cabochette P, Parain K, Mazurier N, Janssens S, Tran HT, et al. Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Development. 2012;139(19):3499–509. https://doi.org/10.1242/dev.079582.

    Article  CAS  PubMed  Google Scholar 

  47. Locker M, Agathocleous M, Amato MA, Parain K, Harris WA, Perron M. Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev. 2006;20(21):3036–48. https://doi.org/10.1101/gad.391106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ringuette R, Atkins M, Lagali PS, Bassett EA, Campbell C, Mazerolle C, et al. A Notch-Gli2 axis sustains Hedgehog responsiveness of neural progenitors and Muller glia. Dev Biol. 2016;411(1):85–100. https://doi.org/10.1016/j.ydbio.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  49. Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol. 2009;184(1):101–12. https://doi.org/10.1083/jcb.200805155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S, Hartman BH, et al. Genome-wide analysis of Muller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS One. 2011;6(8):e22817. https://doi.org/10.1371/journal.pone.0022817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • de Melo J, Zibetti C, Clark BS, Hwang W, Miranda-Angulo AL, Qian J, et al. Lhx2 is an essential factor for retinal gliogenesis and Notch signaling. J Neurosci. 2016;36(8):2391–405. https://doi.org/10.1523/JNEUROSCI.3145-15.2016. This study identifies the transcription factor Lhx2 as critical to the pro-glial aspect of Notch signaling in the developing retina.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • de Melo J, Clark BS, Blackshaw S. Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Sci Rep. 2016;6:32757. https://doi.org/10.1038/srep32757. This study demonstrates that the coordinated activities of multiple signaling pathways and associated transcription factors are necessary for proper MG specification and highlights the concept that individual Notch effectors are only effective in the context of functional Notch signaling.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matthews JM, Visvader JE. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep. 2003;4(12):1132–7. https://doi.org/10.1038/sj.embor.7400030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gueta K, David A, Cohen T, Menuchin-Lasowski Y, Nobel H, Narkis G, et al. The stage-dependent roles of Ldb1 and functional redundancy with Ldb2 in mammalian retinogenesis. Development. 2016;143(22):4182–92. https://doi.org/10.1242/dev.129734.

    Article  CAS  PubMed  Google Scholar 

  55. de Chevigny A, Core N, Follert P, Gaudin M, Barbry P, Beclin C, et al. miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci. 2012;15(8):1120–6. https://doi.org/10.1038/nn.3142.

    Article  PubMed  Google Scholar 

  56. Rajaram K, Harding RL, Bailey T, Patton JG, Hyde DR. Dynamic miRNA expression patterns during retinal regeneration in zebrafish: reduced dicer or miRNA expression suppresses proliferation of Muller glia-derived neuronal progenitor cells. Dev Dyn. 2014;243(12):1591–605. https://doi.org/10.1002/dvdy.24188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baba Y, Aihara Y, Watanabe S. MicroRNA-7a regulates Muller glia differentiation by attenuating Notch3 expression. Exp Eye Res. 2015;138:59–65. https://doi.org/10.1016/j.exer.2015.06.022.

    Article  CAS  PubMed  Google Scholar 

  58. Ha T, Moon KH, Dai L, Hatakeyama J, Yoon K, Park HS, et al. The retinal pigment epithelium is a Notch signaling niche in the mouse retina. Cell Rep. 2017;19(2):351–63. https://doi.org/10.1016/j.celrep.2017.03.040.

    Article  CAS  PubMed  Google Scholar 

  59. Rocha SF, Lopes SS, Gossler A, Henrique D. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev Biol. 2009;328(1):54–65. https://doi.org/10.1016/j.ydbio.2009.01.011.

    Article  CAS  PubMed  Google Scholar 

  60. Riesenberg AN, Brown NL. Cell autonomous and nonautonomous requirements for Delltalike1 during early mouse retinal neurogenesis. Dev Dyn. 2016;245(6):631–40. https://doi.org/10.1002/dvdy.24402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001;128(13):2497–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hufnagel RB, Le TT, Riesenberg AL, Brown NL. Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev Biol. 2010;340(2):490–503. https://doi.org/10.1016/j.ydbio.2010.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. • Maurer KA, Riesenberg AN, Brown NL. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development. 2014;141(16):3243–54. https://doi.org/10.1242/dev.106245. This study proposes a mechanism by which Notch regulates transcription factor patterning and the wave of neurogenesis in the developing retina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chiodini F, Matter-Sadzinski L, Rodrigues T, Skowronska-Krawczyk D, Brodier L, Schaad O, et al. A positive feedback loop between ATOH7 and a Notch effector regulates cell-cycle progression and neurogenesis in the retina. Cell Rep. 2013;3(3):796–807. https://doi.org/10.1016/j.celrep.2013.01.035.

    Article  CAS  PubMed  Google Scholar 

  65. Sato M, Yasugi T, Minami Y, Miura T, Nagayama M. Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion. Proc Natl Acad Sci U S A. 2016;113(35):E5153–62. https://doi.org/10.1073/pnas.1602739113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wan J, Ramachandran R, Goldman D. HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration. Dev Cell. 2012;22(2):334–47. https://doi.org/10.1016/j.devcel.2011.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol. 2006;6:36. https://doi.org/10.1186/1471-213X-6-36.

    Article  PubMed  PubMed Central  Google Scholar 

  68. •• Wan J, Goldman D. Opposing actions of Fgf8a on notch signaling distinguish two Muller glial cell populations that contribute to retina growth and regeneration. Cell Rep. 2017;19(4):849–62. https://doi.org/10.1016/j.celrep.2017.04.009. This is the first study using a reporter line to visualize the dynamics of Notch signaling in the context of zebrafish retina regeneration and demonstrates a key role for Fgf8 in this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. • Conner C, Ackerman KM, Lahne M, Hobgood JS, Hyde DR. Repressing notch signaling and expressing TNFalpha are sufficient to mimic retinal regeneration by inducing Muller glial proliferation to generate committed progenitor cells. J Neurosci. 2014;34(43):14403–19. https://doi.org/10.1523/JNEUROSCI.0498-14.2014. This study highlights a role for Notch in zebrafish in the maintenance of MG quiescence in the adult retina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG Jr, Goldman D. Leptin and IL-6 family cytokines synergize to stimulate Muller glia reprogramming and retina regeneration. Cell Rep. 2014;9(1):272–84. https://doi.org/10.1016/j.celrep.2014.08.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramachandran R, Zhao XF, Goldman D. Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci U S A. 2011;108(38):15858–63. https://doi.org/10.1073/pnas.1107220108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nelson CM, Ackerman KM, O'Hayer P, Bailey TJ, Gorsuch RA, Hyde DR. Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration. J Neurosci. 2013;33(15):6524–39. https://doi.org/10.1523/JNEUROSCI.3838-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagao M, Sugimori M, Nakafuku M. Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol. 2007;27(11):3982–94. https://doi.org/10.1128/MCB.00170-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fischer AJ, Reh TA. Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci. 2001;4(3):247–52. https://doi.org/10.1038/85090.

    Article  CAS  PubMed  Google Scholar 

  75. Hayes S, Nelson BR, Buckingham B, Reh TA. Notch signaling regulates regeneration in the avian retina. Dev Biol. 2007;312(1):300–11. https://doi.org/10.1016/j.ydbio.2007.09.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Todd L, Squires N, Suarez L, Fischer AJ. Jak/Stat signaling regulates the proliferation and neurogenic potential of Muller glia-derived progenitor cells in the avian retina. Sci Rep. 2016;6:35703. https://doi.org/10.1038/srep35703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS One. 2010;5(8):e12425. https://doi.org/10.1371/journal.pone.0012425.

    Article  PubMed  PubMed Central  Google Scholar 

  78. • Del Debbio CB, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, et al. Notch signaling activates stem cell properties of Muller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1. PLoS One. 2016;11(3):e0152025. https://doi.org/10.1371/journal.pone.0152025. This study provides evidence for a molecular mechanism by which Notch influences MG quiescence in a non-regenerative mammal.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jian Q, Tao Z, Li Y, Yin ZQ. Acute retinal injury and the relationship between nerve growth factor, Notch1 transcription and short-lived dedifferentiation transient changes of mammalian Muller cells. Vis Res. 2015;110(Pt A):107–17. https://doi.org/10.1016/j.visres.2015.01.030.

    Article  PubMed  Google Scholar 

  80. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003.

    Article  CAS  PubMed  Google Scholar 

  81. de Melo J, Miki K, Rattner A, Smallwood P, Zibetti C, Hirokawa K, et al. Injury-independent induction of reactive gliosis in retina by loss of function of the LIM homeodomain transcription factor Lhx2. Proc Natl Acad Sci U S A. 2012;109(12):4657–62. https://doi.org/10.1073/pnas.1107488109.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xie J, Huo S, Li Y, Dai J, Xu H, Yin ZQ. Olfactory ensheathing cells inhibit gliosis in retinal degeneration by down-regulation of the Muller cell Notch signaling pathway. Cell Transplant. 2017; https://doi.org/10.3727/096368917X694994.

Download references

Funding

The authors were supported by the NIH (NEI grant RO1 EY 018132, Kirschstein-NRSA 4T32HD007505-20), a Research to Prevent Blindness Innovative Ophthalmic Research Award, and gifts from the Marjorie and Maxwell Jospey Foundation and Shirlye and Peter Helman Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Goldman.

Ethics declarations

Conflict of Interest

The authors declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Organ Development and Regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, E.A., Goldman, D. The Regulation of Notch Signaling in Retinal Development and Regeneration. Curr Pathobiol Rep 5, 323–331 (2017). https://doi.org/10.1007/s40139-017-0153-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0153-7

Keywords

Navigation