Skip to main content
  • 807 Accesses

Abstract

The use of carbon nanotubes in systems that cause a direct conversion of light to mechanical motion is reviewed. Both single walled and multiwalled carbon nanotubes have been utilized in structures that induce macroscopic actuation responses. Various modalities include bundles of carbon nanotubes, free-standing films, carbon nanotubes dispersed into a host matrix, and carbon nanotubes as part of layered structures. In all cases the carbon nanotubes are responsible for the absorption of the light and also for the optomechanical actuation. Simple thermal effects are not the primary contributor to the photoactuation. However, the surrounding environment also influences the observed strain or stress measurements, often leading to an amplification of the intrinsic effect initiated by the carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., DeRossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)

    Article  Google Scholar 

  2. Minett, A., Fràyasse, J., Gang, G., Kim, G.-T., Roth, S.: Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)

    Article  Google Scholar 

  3. Gartstein, Yu.N, Zakhidov, A.A., Baughman, R.H.: Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89, 045503/1–045503/4 (2002)

    Article  Google Scholar 

  4. Sun, G., Kürti, J., Kertesz, M., Baughman, R.H.: Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 15076–15080 (2002)

    Article  Google Scholar 

  5. Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., VanDerveer, W., Gennett, T.: Single wall carbon nanotube–nafion composite actuators. Nano Lett. 2, 1329–1332 (2002)

    Article  Google Scholar 

  6. Tahhan, M., Truong, V.-T., Spinks, G.M., Wallace, G.G.: Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626–632 (2003)

    Article  Google Scholar 

  7. Levitsky, I.A., Kanelos, P.T., Euler, W.B.: Novel actuating system based on a composite of single-walled carbon nanotubes and an ionomeric polymer. Mater. Res. Soc. Symp. Proc. 785, D9.1.1–D9.1.6 (2004)

    Google Scholar 

  8. Levitsky, I.A., Kanelos, P., Euler, W.B.: Electromechanical actuation of composite material from carbon nanotubes and ionomeric polymer. J. Chem. Phys. 121, 1058–1065 (2004)

    Article  Google Scholar 

  9. Minett, A., Fràysse, J., Gang, G., Kim, G.-T., Roth, S.: Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)

    Article  Google Scholar 

  10. Gartstein, Yu.N, Zakhidov, A.A., Baughman, R.H.: Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89, 045503/1–045503/4 (2002)

    Article  Google Scholar 

  11. Liu, J.Z., Zheng, Q., Jiang, Q.: Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys. Rev. B. 67, 075414/1–075414/8 (2003)

    Google Scholar 

  12. Li, C., Chou, T.-W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405/1–073405/3 (2003)

    Google Scholar 

  13. Bozovic, D., Bockrath, M., Hafner, J.H., Lieber, C.M., Park, H., Tinkham, M.: Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys. Rev. B 67, 033407/1–033407/4 (2003)

    Article  Google Scholar 

  14. Verissimo-Alves, M., Koiller, B., Chacham, H., Capaz, R.B.: Electromechanical effects in carbon nanotubes: ab initio and analytical tight-binding calculations. Phys. Rev. B 67, 161401/1–161401/4 (2003)

    Article  Google Scholar 

  15. Cao, J., Wang, Q., Dai, H.: Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90, 157601/1–157601/4 (2003)

    Article  Google Scholar 

  16. Farajian, A.A., Yakobson, B.I., Mizuseki, H., Kawazoe, Y.: Electronic transport through bent carbon nanotubes: nanoelectromechanical sensors and switches. Phys. Rev. B 67, 205423/1–205423/6 (2003)

    Article  Google Scholar 

  17. Sapmaz, S., Blanter, Ya.M., Gurevich, L., van der Zant, H.S.J.: Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B. 67, 235414/1–235414/7 (2003)

    Google Scholar 

  18. Minot, E.D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M., McEuen, P.L.: Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401/1–156401/4 (2003)

    Article  Google Scholar 

  19. Pastewka, L., Kosinen, P., Elsasser, C., Moseler, M.: Understanding the microscopic processes that govern the charge-induced deformation of carbone nanotubes. Phys. Rev. B Cond. Matt. Phys. 180, 155428/1–155428/16 (2009)

    Google Scholar 

  20. Zhang, Y., Iijima, S.: Elastic response of carbon nanotube bundles to visible light. Phys. Rev. Lett. 82, 3472–3475 (1999)

    Article  Google Scholar 

  21. Cronin, S.B., Yin, Y., Walsh, A., Capaz, R.B., Stolyrov, A., Tangney, P., Cohern, M.L., Louie, S.G., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Tinkham, M.: Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion. Phys. Rev. Lett. 96, 127403/1–127402/4 (2006)

    Article  Google Scholar 

  22. Ahir, S.V., Terentjev, E.M., Lu, S.X., Panchapakesan, B.: Thermal fluctuations, stress relaxation, and actuation in carbon nanotube networks. Phys. Rev. B Cond. Matt. Phys. 76, 165437/1–165437/6 (2007)

    Google Scholar 

  23. Ahir, S.V., Terentjev, E.M.: Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491–495 (2005)

    Article  Google Scholar 

  24. Ahir, S.V., Terentjev, E.M.: Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Lett. 96, 133902/1–133902/4 (2006)

    Article  Google Scholar 

  25. Ahir, S.V., Squire, A.M., Tajbakhsh, A.R., Terentjev, E.M.: Infrared actuation in aligned polymer-nanotube composites. Phys. Rev. B Cond. Matt. Phys. 73, 085420/1–0854201/2 (2006)

    Google Scholar 

  26. Ahir, S., Huang, Y.Y., Terentjev, E.M.: Polymers with aligned carbon nanotubes: active composite materials. Polymer 49, 3841–3854 (2008)

    Article  Google Scholar 

  27. Zhang, X., Pint, C.L., Lee, M.H., Schubert, B.E., Jamshidi, A., Takei, K., Ko, H., Gillies, A., Bardhan, R., Urban, J.J., Wu, M., Fearing, R., Javey, A.: Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. NanoLetters 11, 3239–3244 (2011)

    Article  Google Scholar 

  28. Lu, S.X., Panchapakesan, B.: Optically driven nanotube actuators. Nanotechnology 16, 2548–2554 (2005)

    Article  Google Scholar 

  29. Lu, S.X., Panchapakesan, B.: Nanotube micro-optomechanical actuators. Appl. Phys. Lett. 88, 253107/1–253107/3 (2006)

    Google Scholar 

  30. Flannigan, D.J., Zewail, A.H.: Optomechanical and crystallization phenomena visualized with 4D electron microscopy: interfacial carbon nanotubes on silicon nitride. NanoLetters 10, 1892–1899 (2010)

    Article  Google Scholar 

  31. Levitsky, I.A., Kanelos, P.T., Viola, E.A., Euler, W.B.: Photoactuation in nafion-carbon nanotube bilayer composites. Proc. SPIE Nanosens. Mater. Device II(6008), 600802/1–600802/6 (2005)

    Google Scholar 

  32. Levitsky, I.A., Kanelos, P.T., Woodbury, D.S., Euler, W.B.: Photoactuation from a carbon nanotube–nafion bilayer composite. J. Phys. Chem. B 110, 9421–9425 (2006)

    Article  Google Scholar 

  33. Viola, E.A., Levitsky, I.A., Euler, W.B.: Kinetics of photoactuation in single wall carbon nanotube–nafion bilayer composite. J. Phys. Chem. C 114, 20258–20266 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Euler, W.B. (2012). Use of Carbon Nanotubes in Photoactuating Composites. In: Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4826-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4826-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4825-8

  • Online ISBN: 978-1-4471-4826-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics