Skip to main content
Log in

Design and cost analysis of batch adsorber systems for removal of dyes from contaminated groundwater using natural low-cost adsorbents

  • Research
  • Published:
International Journal of Industrial Chemistry

Abstract

Batch adsorbers were designed for the adsorption of the fabric dyes Basic Violet 16 (BV16) and Reactive Red 195 (RR195) on locally available low-cost natural adsorbents of Persian bentonite, vermicompost and Persian charred dolomite. The adsorption isotherm data were in agreement with the Langmuir isotherm model (R2 > 99%). Results showed that with increasing the adsorption capacity of bentonite for BV16 from 434.78 to 833.33 mg/g due to the presence of the anionic dye, the amount of the adsorbent decreases by 50%. The adsorption capacity of vermicompost for the cationic dye was obtained 16 mg/g in single dye solution and of charred dolomite for the anionic dye was almost 7 mg/g in both dye systems. Based on the extended Langmuir model, the maximum adsorption capacity of natural bentonite for BV16 and of charred dolomite for RR195 were concluded 821.63 mg/g and 7.03 mg/g, respectively, which the capacities are almost the same in single and binary systems. The adsorption capacity and removal efficiency of Persian bentonite from contaminated water are comparable with that of activated carbon. Compared to activated carbon bentonite and the other natural adsorbents used in this study are less expensive and do not require a separate activation or pre-treatment step. Cost for 90% removal of dye from 100 m3 groundwater using 1 kg the studied adsorbents of vermicompost, charred dolomite and bentonite was calculated 0.06, 0.05 and 0.04 euro, respectively, in both single and binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alharbi OMLA, Basheer AA, Rafat AK et al (2018) Health and environment effects of persistent organic pollutants. J Mol Liq 263:442–453. https://doi.org/10.1016/j.molliq.2018.05.029

    Article  CAS  Google Scholar 

  2. Basheer AA (2017) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30(4):402–406. https://doi.org/10.1002/chir.22808

    Article  CAS  PubMed  Google Scholar 

  3. Arthur TH (2002) Encyclopedia of surface and colloid science. Marcel Dekker, New York

    Google Scholar 

  4. Basheer AA (2018) New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 261:583–593. https://doi.org/10.1016/j.molliq.2018.04.021

    Article  CAS  Google Scholar 

  5. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091. https://doi.org/10.1021/cr300133d

    Article  CAS  PubMed  Google Scholar 

  6. Basheer AA (2018) Stereoselective uptake and degradation of (±) -o, p-DDD pesticide stereomers in water sediment system. Chirality 30:1088–1095. https://doi.org/10.1002/chir.22989

    Article  CAS  PubMed  Google Scholar 

  7. Burakova EA, Dyachkova AP, Rukhov AV et al (2018) Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J Mol Liq 253:340–346. https://doi.org/10.1016/j.molliq.2018.01.062

    Article  CAS  Google Scholar 

  8. Ali I, Mohd A, Khan TA (2013) Arsenite removal from water by electro-coagulation on zinc–zinc and copper–copper electrodes. Int J Environ Sci Technol 10(2):377–384. https://doi.org/10.1007/s13762-012-0113-z

    Article  CAS  Google Scholar 

  9. Khani H, Rofouei MK, Arab P et al (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion (II). J Hazard Mater 183(1–3):402–409. https://doi.org/10.1016/j.jhazmat.2010.07.039

    Article  CAS  PubMed  Google Scholar 

  10. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20(1):001–018. https://doi.org/10.4491/eer.2015.018

    Article  Google Scholar 

  11. Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interface Sci 211:93–101. https://doi.org/10.1016/j.molliq.2016.02.088

    Article  CAS  PubMed  Google Scholar 

  12. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  13. Jun-xia Y, Zhu J, Feng L et al (2015) Simultaneous removal of cationic dyes by the mixed sorbent of magnetic and non-magnetic modified sugarcane baggase. J Colloid Interface Sci 451:153–160. https://doi.org/10.1016/j.jcis.2015.04.009

    Article  CAS  Google Scholar 

  14. Stawiński W, Węgrzyn A, Dańko T et al (2017) Acid-base treated vermiculite as high performance adsorbent: insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere 173:107–115. https://doi.org/10.1016/j.chemosphere.2017.01.039

    Article  CAS  PubMed  Google Scholar 

  15. Ali I, Alharbi OML, Alothman ZA (2018) Artificial neural network modelling of amido black dye sorption on iron composite nano material: Kinetics and thermodynamics studies. J Mol Liq 250:1–8. https://doi.org/10.1016/j.molliq.2017.11.163

    Article  CAS  Google Scholar 

  16. Ali I, Al-Othman ZA (2016) Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin Water Treat 57(22):10409–10421. https://doi.org/10.1080/19443994.2015.1041164

    Article  CAS  Google Scholar 

  17. Ali I, Alothman ZA, Alwarthan A (2017) Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J Mol Liq 241:123–129. https://doi.org/10.1016/j.molliq.2017.06.005

    Article  CAS  Google Scholar 

  18. Ali I, Gupta VK, Aboul-Enein HY (2005) Metal ion speciation and capillary electrophoresis: application in the new millennium. Electrophoresis 26(21):3988–4002. https://doi.org/10.1002/elps.200500216

    Article  CAS  PubMed  Google Scholar 

  19. Ali I, ALOthman ZA, Al-Warthan A (2016) Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int J Environ Sci Technol 13:733–742. https://doi.org/10.1007/s13762-015-0919-6

    Article  CAS  Google Scholar 

  20. Lian L, Guo L, Guo C (2009) Adsorption of congo red from aqueous solutions onto Ca-bentonite. J Hazard Mater 161:126–131. https://doi.org/10.1016/j.jhazmat.2008.03.063

    Article  CAS  PubMed  Google Scholar 

  21. An S, Liu X, Yang L et al (2015) Enhancement removal of crystalallen violet dye using magnetic calcium ferrite nanoparticle: Study in single- and binary-solute systems. Chem Eng Res Des 94:726–735. https://doi.org/10.1016/j.cherd.2014.10.013

    Article  CAS  Google Scholar 

  22. Liu L, Zhang B, Zhang Y et al (2015) Simultaneous removal of cationic and anionic dyes from environmental water using Montmorillonite-Pillard Graphene oxide. J Chem Eng Data 60(5):1270–1278. https://doi.org/10.1021/je5009312

    Article  CAS  Google Scholar 

  23. Santos SCR, Oliveira AFM, Boaventura RAR (2016) Bentonitic clay as adsorbent for the decolorisation of dyehouse effluents. J Clean Prod 126:1–10. https://doi.org/10.1016/j.jclepro.2016.03.092

    Article  CAS  Google Scholar 

  24. Ali I, Alothman ZA, Al-Warthan A et al (2014) Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res 21(5):3218–3229. https://doi.org/10.1007/s11356-013-2235-3

    Article  CAS  Google Scholar 

  25. Basheer AA, Ali I (2019) Water photo splitting for green hydrogen energy by green nanoparticles. Int J Hydrogen Energ 44(23):11564–11573. https://doi.org/10.1016/j.ijhydene.2019.03.040

    Article  CAS  Google Scholar 

  26. Ali I, Gupta VK, Khan TA et al (2012) Removal of arsenate from aqueous solution by electrocoagulation method using Al-Fe electrodes. Int J Electrochem Sci 7:1898–1907

    CAS  Google Scholar 

  27. Ali I, Khan TA, Asim M (2011) Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sep Purif Rev. https://doi.org/10.1080/15422119.2011.542738

    Article  Google Scholar 

  28. Ali I, Jain CK (2004) Advances in arsenic speciation techniques. Int J Environ Anal Chem 84(12):947. https://doi.org/10.1080/03067310410001729637

    Article  CAS  Google Scholar 

  29. Gupta V, Jain R, Nayak A et al (2011) Removal of hazardous dye_Tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067. https://doi.org/10.1016/j.msec.2011.03.006

    Article  CAS  Google Scholar 

  30. Rajendran S, Mansoob Khan M, Gracia F et al (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641

    Article  CAS  Google Scholar 

  31. Saravanan R, Karthikeyana S, Gupta VK (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33(1):91–98. https://doi.org/10.1016/j.msec.2012.08.011

    Article  CAS  Google Scholar 

  32. Saravanan R, Thirumal E, Gupta VK et al (2013) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol 177:394–401. https://doi.org/10.1016/j.molliq.2012.10.018

    Article  CAS  Google Scholar 

  33. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene: an overview. Environ Sci Pollut Res 20:2828–2843

    Article  CAS  Google Scholar 

  34. Mohammadi N, Khani H, Gupta VK et al (2011) Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J Colloid Interface Sci 362:457–462. https://doi.org/10.1016/j.jcis.2011.06.067

    Article  CAS  PubMed  Google Scholar 

  35. Yu J, Cai X, Feng L et al (2015) Synergistic and competitive adsorption of cationic and anionic dyes on polymer modified yeast prepared at room temperature. J Taiwan Inst Chem E 57:98–103. https://doi.org/10.1016/j.jtice.2015.05.018

    Article  CAS  Google Scholar 

  36. Kayranli B (2011) Adsorption of textile dyes onto iron-based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem Eng 173(3):782–791. https://doi.org/10.1016/j.cej.2011.08.051

    Article  CAS  Google Scholar 

  37. Ali I, Hassan Y, Einen A (2002) Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48:275–278. https://doi.org/10.1016/S0045-6535(02)00085-1

    Article  CAS  PubMed  Google Scholar 

  38. Ali I, Alothman ZA, Marsin Sanagi M (2015) Green synthesis of iron nano-impregnated adsorbent for fast removal of Fluoride from water. J Mol Liq 211:457–665. https://doi.org/10.1016/j.molliq.2015.07.034

    Article  CAS  Google Scholar 

  39. Ali I, ALOthman ZA, Alwarthan A (2016) Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J Mol Liq 221:1168–1174. https://doi.org/10.1016/j.molliq.2016.06.089

    Article  CAS  Google Scholar 

  40. Ali I, Alothman ZA, Alwarthan A (2017) Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J Mol Liq 236:205–213. https://doi.org/10.1016/j.molliq.2017.04.028

    Article  CAS  Google Scholar 

  41. Rahimi A, Bayati B, Khamforoush M (2019) Synthesis and application of Cu-X zeolite for removal of Antibiotic from aqueous solution: process optimization using response surface methodology. AJSE 44:5381–5397. https://doi.org/10.1007/s13369-018-3644-x

    Article  CAS  Google Scholar 

  42. Ali I, Alharbi OML, ALOthman ZA, Al-Mohaimeed AM, Alwarthan A (2019) Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ Res 170:389–397. https://doi.org/10.1016/j.envres.2018.12.066

    Article  CAS  PubMed  Google Scholar 

  43. Ali I, Khan TA, Iqbal H (2011) Treatment and remediation methods for arsenic removal from the ground water. Int J Renew Energy Environ Eng 3(1):48. https://doi.org/10.1504/IJEE.2011.037873

    Article  CAS  Google Scholar 

  44. Ali I, Basheer AA, Mbianda XY (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180. https://doi.org/10.1016/j.envint.2019.03.029

    Article  CAS  PubMed  Google Scholar 

  45. Kumar A, Venkatesu P (2014) Does the stability of proteins in ionic liquids obey the Hofmeister series? Int J Biol Macromol 63:244–253. https://doi.org/10.1016/j.ijbiomac.2013.10.031

    Article  CAS  PubMed  Google Scholar 

  46. Imran A, Alharbi OML, Alothman ZA et al (2018) Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem Photobiol 94(5):935–941. https://doi.org/10.1111/php.12937

    Article  CAS  Google Scholar 

  47. Ziane S, Bessaha F, Marouf-Khelifa K et al (2018) Single and binary adsorption of reactive black 5 and Congo red on modified dolomite: performance and mechanism. J Mol Liq 249:1245–1253. https://doi.org/10.1016/j.molliq.2017.11.130

    Article  CAS  Google Scholar 

  48. Fil BA, Yilmaz MT, Bayar S, Elkoca MT (2014) Investigation of adsorption of the dyestuff Astrazon Red Violet 3RN (Basic Violet 16) on montmorillonite clay. Braz J Chem Eng 31(1):171–182. https://doi.org/10.1590/S0104-66322014000100016

    Article  CAS  Google Scholar 

  49. Azari A, Gholami M, Torkshavand Z et al (2015) Evaluation of basic violet 16 adsorption from aqueous solution by magnetic zero valent iron-activated carbon nanocomposite using response surface method: isotherm and kinetic studies. J Mazandaran Univ Med Sci 25(121):333–347

    Google Scholar 

  50. Nassar MY, Ali EI, Zakaria ES (2017) Tunable auto-combustion preparation of TiO2 nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv 7:8034–8050. https://doi.org/10.1039/c6ra27924d

    Article  CAS  Google Scholar 

  51. Perez-Calderon J, Santos M, Zaritzky N (2018) Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: Analysis of kinetics, equilibrium and adsorption mechanisms. J Environ Chem Eng 6:6749–6760. https://doi.org/10.1016/j.jece.2018.10.039

    Article  CAS  Google Scholar 

  52. Kumar Dey A, Kumar U (2017) Adsorption of reactive red 195 from polluted water upon Na2CO3 modified jute fibre. IJET 9(3):2319–8613. https://doi.org/10.21817/ijet/2017/v9i3/170903S011

    Article  Google Scholar 

  53. Yadigar Dursun A, Tepe Ö (2011) Removal of chemazol reactive red 195 from aqueous solution by dehydrated beet pulp carbon. J Hazard Mater 194:303–311. https://doi.org/10.1016/j.jhazmat.2011.07.105

    Article  CAS  Google Scholar 

  54. Mahmoud ME, Nabil GM, El-Mallah NM (2016) Kinetic, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent. J Ind Eng Chem 37:156–167. https://doi.org/10.1016/j.jiec.2016.03.020

    Article  CAS  Google Scholar 

  55. Harifi-Mood AR, Hadavand-Mirzaie F (2015) Adsorption of Basic violet 16 from aqueous solutions by waste sugar beet pulp: kinetic, thermodynamic, and equilibrium isotherm studies. Chem Spec Bioavailab 27(1):1–7. https://doi.org/10.1080/09542299.2015.1023086

    Article  CAS  Google Scholar 

  56. Ali I, Alharbi OML, Alothman ZA et al (2018) Facile and eco- friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf B 171(1):606–613. https://doi.org/10.1016/j.colsurfb.2018.07.071

    Article  CAS  Google Scholar 

  57. Nodeh HR, Ibrahim WA, Ali I, Sanagi MM (2016) Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ Sci Pollut Res 23(10):9759–9773. https://doi.org/10.1007/s11356-016-6137-z

    Article  CAS  Google Scholar 

  58. Ali I (2018) Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J Mol Liq 271(1):677–685. https://doi.org/10.1016/j.molliq.2018.09.021

    Article  CAS  Google Scholar 

  59. ALOthman ZA, Badjah AY, Ali I (2019) Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4-tert-octylphenol endocrine disruptor in water. J Mol Liq 275(1):41–48. https://doi.org/10.1016/j.molliq.2018.11.049

    Article  CAS  Google Scholar 

  60. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9:45. https://doi.org/10.1007/s13201-019-0927-7

    Article  CAS  Google Scholar 

  61. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi/walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106. https://doi.org/10.1016/j.jcis.2011.12.038

    Article  CAS  PubMed  Google Scholar 

  62. Saravanan R, Mansoob Khan M, Gupta VK et al (2015) ZnO/CdO nanocomposite for visible light induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133. https://doi.org/10.1016/j.jcis.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  63. Mittal A, Mittal J, Malviya A et al (2010) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344:497–507. https://doi.org/10.1016/j.jcis.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  64. Regti A, Laamari MR, Stiriba SE et al (2017) The potential use of activated carbon prepared from Ziziphus species for removing dyes from waste waters. Appl Water Sci 7(7):4099–4108. https://doi.org/10.1007/s13201-017-0567-8

    Article  CAS  Google Scholar 

  65. Shokry H, Elkady M, Hamad H (2019) Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: operational parameters and mechanism study. JMRT 8(5):4477–4488. https://doi.org/10.1016/j.jmrt.2019.07.061

    Article  CAS  Google Scholar 

  66. Saravanan R, Sacari E, Gracia F et al (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

    Article  CAS  Google Scholar 

  67. Devaraj M, Saravanan R, Deivasigamani RK (2016) Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liq 221:930–941. https://doi.org/10.1016/j.molliq.06.028

    Article  CAS  Google Scholar 

  68. Saravanan R (2012) Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liq 178:88–93. https://doi.org/10.1016/j.molliq.2012.11.012

    Article  CAS  Google Scholar 

  69. Afshin S, Mokhtari SA, Vosoughi M et al (2018) Data of adsorption of Basic Blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae. J Data Brief 21:1008–1013. https://doi.org/10.1016/j.dib.2018.10.023

    Article  Google Scholar 

  70. El Qada EN, Allen SJ, Walke GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbons 135(3):174–184. https://doi.org/10.1016/j.cej.2007.02.023

    Article  CAS  Google Scholar 

  71. Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362(2):337–344. https://doi.org/10.1016/j.jcis.2011.06.081

    Article  CAS  PubMed  Google Scholar 

  72. Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Eng Chem Res 50(24):13589–13613. https://doi.org/10.1021/ie201477c

    Article  CAS  Google Scholar 

  73. Saleh TA, Gupta VK (2012) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251. https://doi.org/10.1016/j.seppur.2012.01.039

    Article  CAS  Google Scholar 

  74. Manjula Rani K, Palanisamy PN, Gayathri S et al (2015) Adsorptive removal of Basic Violet dye from aqueous solution by activated carbon prepared from tea dust material. Int J Innov Res Sci Eng Technol 4(8):2347–6710. https://doi.org/10.15680/IJIRSET.2015.0408020

    Article  Google Scholar 

  75. Saravanan R, Mansoob Khan M, Gupta VK (2015) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activities. RSC Adv. https://doi.org/10.1039/C5RA02557E

    Article  Google Scholar 

  76. Ghaedi M, Hajjati S, Mahmudi Z et al (2015) Modeling of competitive ultrasonic assisted removal of the dyes—Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chem Eng 268:28–37. https://doi.org/10.1016/j.cej.2014.12.090

    Article  CAS  Google Scholar 

  77. Gupta VK (2014) Potential of activated carbon from Waste Rubber Tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci 417:420–430. https://doi.org/10.1016/j.jcis.2013.11.067

    Article  CAS  PubMed  Google Scholar 

  78. Saravanan R, Joicy S, Gupta VK (2013) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C 33(8):4725–4731. https://doi.org/10.1016/j.msec.2013.07.034

    Article  CAS  Google Scholar 

  79. Corda NC, Kini MS (2018) A review on adsorption of cationic dyes using activated carbon. International Conference on Research in Mechanical Engineering Sciences (RiMES 2017) Vol. 144. 10.1051/matecconf/201814402022.

  80. Saravanan R, Karthikeyan N, Gupta VK et al (2013) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33(44):2235–2244. https://doi.org/10.1016/j.msec.2013.01.046

    Article  CAS  Google Scholar 

  81. Asfaram A, Ghaedi M, Agarwal S et al (2015) Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon Optimization of parameters using response surface methodology with central composite design. RSC Adv. https://doi.org/10.1039/C4RA15637D

    Article  Google Scholar 

  82. Gupta VK, Atar N, Yola L (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217. https://doi.org/10.1016/j.watres.2013.09.027

    Article  CAS  PubMed  Google Scholar 

  83. Pereira M, Korn M, Santos B et al (2009) Vermicompost for tinted organic cationic dyes retention. Water Air Soil Poll 200:227–235. https://doi.org/10.1007/s11270-008-9906-6

    Article  CAS  Google Scholar 

  84. Walker G, Connor G, Allen S (2004) Copper (II) removal onto dolomitic sorbents. Chem Eng Res Des 82:961–966. https://doi.org/10.1205/0263876041580712

    Article  CAS  Google Scholar 

  85. Nguyen MV, Lee BK (2015) Removal of dimethyl sulfide from aqueous solution using cost-effective modified chicken manure biochar produced from slow pyrolysis. Sustainability 7(11):15057–15072. https://doi.org/10.3390/su71115057

    Article  CAS  Google Scholar 

  86. Gupta VK, Suhas TI et al (2016) Column operation studies for the removal of dyes and phenols using a low cost adsorbent. Global J Environ Sci Manage 2(1):1–10. https://doi.org/10.7508/gjesm.2016.01.001

    Article  CAS  Google Scholar 

  87. Gupta VK, Jain CK, Ali I et al (2002) Removal of lindane and malathion from wastewater using bagasse fly ash_a sugar industry waste. Water Res 36(10):2483–2490. https://doi.org/10.1016/S0043-1354(01)00474-2

    Article  CAS  PubMed  Google Scholar 

  88. Saravanan R, Gupta VK, Narayanan V et al (2014) Visible light degradation of textile effluent using novel catalyst ZnO/g-Mn2O3 R. J Taiwan Inst Chem E 45(4):1910–1917. https://doi.org/10.1016/j.jtice.2013.12.021

    Article  CAS  Google Scholar 

  89. Gupta VK, Ali I, Saleh TA, Siddiqui MN, Agarwal S (2013) Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res 20(3):1261–1268. https://doi.org/10.1007/s11356-012-0950-9.91-

    Article  CAS  Google Scholar 

  90. Sarma G, Sen Gupta S, Bhattacharyya K (2016) Adsorption of Crystal violet on raw and acid-treated montmorillonite K10 in aqueous suspension. J Environ Manage 171:1–10. https://doi.org/10.1016/j.jenvman.2016.01.03892-

    Article  CAS  PubMed  Google Scholar 

  91. Liang X, Lu Y, Li Z et al (2017) Bentonite/carbon composite as highly recyclable adsorbents for alkaline wastewater treatment and organic dye removal. Microporous Mesoporous Mater 241:107–114. https://doi.org/10.1016/j.micromeso.2016.12.01693-

    Article  CAS  Google Scholar 

  92. Albadarin A, Mo J, Glocheux Y et al (2014) Preliminary investigation of mixed adsorbents for the removal of copper and methylene blue from aqueous solutions. Chem Eng 255:525–534. https://doi.org/10.1016/j.cej.2014.06.029

    Article  CAS  Google Scholar 

  93. Pirozzi D, Sannino F (2014) Design of a multi-stage stirred adsorber using mesoporous metal oxides for herbicide from wastewaters. J Environ Chem Eng 2(1):211–219. https://doi.org/10.1016/j.jece.2013.12.013

    Article  CAS  Google Scholar 

  94. Lin SH, Juang RS (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J Environ Manage 90(3):1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  95. Saravanan R, Gupta VK, Narayanan V (2013) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141. https://doi.org/10.1016/j.molliq.2013.02.023

    Article  CAS  Google Scholar 

  96. Saravanan R, Gupta VK, Mosquera E et al (2014) Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liq 198:409–412. https://doi.org/10.1016/j.molliq.2014.07.030

    Article  CAS  Google Scholar 

  97. Khan TA, Nazi M, Ali I et al (2017) Removal of Chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab J Chem 10:S2388–S2398. https://doi.org/10.1016/j.arabjc.2013.08.019

    Article  CAS  Google Scholar 

  98. Chrishel NC, Kini MS (2018) A review on adsorption of cationic dyes using activated carbon. MATEC Web Conf. https://doi.org/10.1051/matecconf/201814402022

    Article  Google Scholar 

  99. Singh KP, Mohan D, Sinha S et al (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste. Ind Eng Chem Res 42(9):1965–1976. https://doi.org/10.1021/ie020800d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Khalilzadeh Shirazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilzadeh Shirazi, E., Metzger, J.W., Fischer, K. et al. Design and cost analysis of batch adsorber systems for removal of dyes from contaminated groundwater using natural low-cost adsorbents. Int J Ind Chem 11, 101–110 (2020). https://doi.org/10.1007/s40090-020-00205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40090-020-00205-1

Keywords

Navigation