Skip to main content
Log in

Vermicompost for Tinted Organic Cationic Dyes Retention

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The use of vermicompost was expanded as natural adsorbent for cationic dyes retention. The adsorption profiles in batch and flow modes for crystal violet and methylene blue on vermicompost material were evaluated. In batch mode, a retention index higher than 97% was obtained for both compounds, while in flow condition, 40 g of dried adsorbent material were enough to remove 100 mg of crystal violet or methylene blue at column flow rates of 5 and 20 mL min−1. Adsorption isotherms showed adsorptive maximum capacities for vermicompost of 0.78 and 5.47 mg g−1, respectively, which were compatible with the literature. Due to this good efficiency capacity, incineration steps can be considered as acceptable disposal procedures for enriched vermicompost. From these characteristics, economical and environmental advantages of the proposed material for the evaluated cationic dyes retention were evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbal, F. (2005). Adsorption of basic dyes from aqueous solution onto pumice powder. Journal of Colloid and Interface Science, 286(2), 455–458. doi:10.1016/j.jcis.2005.01.036.

    Article  CAS  Google Scholar 

  • Arogus, A. Z., Gulen, J., & Evers, R. H. (2008). Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresource Technology, 99(6), 1503–1508. doi:10.1016/j.biortech.2007.04.033.

    Article  Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479. doi:10.1016/S0043-1354(98)00475-8.

    Article  CAS  Google Scholar 

  • Chatzisymeon, E., Xekoukoulotakis, N. P., Coz, A., Kalogerakis, N., & Mantzavinos, D. (2006). Electrochemical treatment of textile dyes and dyehouse effluents. Journal of Hazardous Materials, A137(2), 998–1007. doi:10.1016/j.jhazmat.2006.03.032.

    Article  Google Scholar 

  • Dart, R. K. (1996). Microbiology for analytical chemist. London: The Royal Society of Chemistry.

    Google Scholar 

  • Fernández-Bayo, J. D., Romero, E., Schnitzler, F., & Burauel, P. (2008). Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts. Environmental Pollution, 154(2), 330–337. doi:10.1016/j.envpol.2007.10.002.

    Article  Google Scholar 

  • Holt, M. S. (2000). Sources of chemical contaminants and routes into the freshwater environment. Food and Chemical Toxicology, 38(Supplement 1), S21–S27. doi:10.1016/S0278-6915(99)00136-2.

    Article  CAS  Google Scholar 

  • Jordão, C. P., Fialho, L. L., Neves, J. C. L., Cecon, P. R., Mendonça, E. S., & Fontes, R. L. F. (2007). Reduction of heavy metals contents in liquid effluents by vermicompost and the use of the metal-enriched vermicomposts in lettuce cultivation. Bioresource Technology, 98(15), 2800–2813. doi:10.1016/j.biortech.2006.06.023.

    Article  Google Scholar 

  • Jordão, C. P., Pereira, M. G., Einloft, R., Santana, M. B., Bellato, C. R., & de Mello, J. W. V. (2002). Removal of Cu, Cr, Ni, Zn and Cd from electroplating wastes and synthetic solutions by vermicompost of cattle manure. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 37(5), 875–892.

    Google Scholar 

  • Lambert, J. B., Shurvell, H. F., Lightner, D. A., & Cooks, R. G. (1998). Organic structural spectroscopy. New Jersey: Prentice-Hall.

    Google Scholar 

  • Landgraf, M. D., da Silva, S. C., & Rezende, M. O. O. (1998). Mechanism of metribuzin herbicide sorption by humic acid samples from peat and vermicompost. Analytica Chimica Acta, 368(1–2), 155–164. doi:10.1016/S0003-2670(98)00049-X.

    Article  CAS  Google Scholar 

  • Lee, C., Low, K., & Chow, S. (1996). Chrome sludge as an adsorbent for color removal. Bioresource Technology, 54(2), 183–189. doi:10.1016/0960-8524(95)00130-1.

    Article  Google Scholar 

  • Li, L., Wang, S., & Zhu, Z. (2006). Geopolymeric adsorbents from fly ash for dye removal from aqueous solutions. Journal of Colloid and Interface Science, 300(1), 52–59. doi:10.1016/j.jcis.2006.03.062.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.

    Google Scholar 

  • Manahan, S. E. (1994). Environmental chemistry. Boca Raton: Lewis.

    Google Scholar 

  • Mason, T. J. (1990). The uses of ultrasound in chemistry. London: The Royal Society of Chemistry.

    Google Scholar 

  • Matos, G. D., & Arruda, M. A. Z. (2003). Vermicompost as an adsorbent for removing metal ions from laboratory effluents. Process Biochemistry, 39(1), 81–88. doi:10.1016/S0032-9592(02)00315-1.

    Article  CAS  Google Scholar 

  • Otero, M., Rozada, F., Calvo, L. F., Garcia, A. I., & Morán, A. (2003). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes and Pigments, 57(1), 55–65. doi:10.1016/S0143-7208(03)00005-6.

    Article  CAS  Google Scholar 

  • Pace, L. A., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis, part 2—chemical and microbiological properties (2nd ed.). Madison: Soil Science Society of America.

    Google Scholar 

  • Pavan, F. A., Mazzocato, A. C., & Gushikem, Y. (2008). Removal of methylene blue dye form aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresource Technology, 99(8), 3162–3165. doi:10.1016/j.biortech.2007.05.067.

    Article  CAS  Google Scholar 

  • Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour form textile wastewater during whole bacterial cells: a review. Dyes and Pigments, 58(3), 179–196. doi:10.1016/S0143-7208(03)00064-0.

    Article  CAS  Google Scholar 

  • Pereira, M. G., & Arruda, M. A. Z. (2003). Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. Journal of the Brazilian Chemical Society, 14(1), 39–47. doi:10.1590/S0103-50532003000100007.

    Article  CAS  Google Scholar 

  • Pereira, M. G., & Arruda, M. A. Z. (2004). Preconcentration of Cd(II) and Pb(II) using humic substances and flow systems coupled to flame atomic absorption spectrometry. Mikrochimica Acta, 146(3–4), 215–222. doi:10.1007/s00604-004-0231-5.

    CAS  Google Scholar 

  • Rocha, J. C., Rosa, A. H., & Furlan, M. (1998). An alternative methodology for the extraction of humic substances from organic soils. Journal of the Brazilian Chemical Society, 9(1), 51–56.

    CAS  Google Scholar 

  • Sag, Y., & Kutsal, T. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 6(2), 145–151. doi:10.1016/S1369-703X(00)00083-8.

    Article  CAS  Google Scholar 

  • Solomons, T. W. G., & Fryhle, C. B. (1998). Organic chemistry. New York: Wiley.

    Google Scholar 

  • Stevenson, F. J. (1982). Humus chemistry. New York: Wiley.

    Google Scholar 

  • Tuomela, M., Vikman, M., Hatakka, A., & Itavaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72(2), 169–183. doi:10.1016/S0960-8524(99)00104-2.

    Article  CAS  Google Scholar 

  • Wang, S., Li, H., & Xu, L. (2006). Application of zeolite MCM-22 for basic dye removal from wastewater. Journal of Colloid and Interface Science, 295(1), 71–78. doi:10.1016/j.jcis.2005.08.006.

    Article  CAS  Google Scholar 

  • Weber, W. J., Jr., & LeBoeuf, E. J. (1999). Processes for advanced treatment of water. Water Science and Technology, 40(4–5), 11–19. doi:10.1016/S0273-1223(99)00480-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB, Salvador, BA, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), and Ministério da Educação e Cultura (PET/SESu/MEC, Brasília, DF, Brazil) for the research fellowships and financial supports. The authors are also grateful to Dr. André Galembeck, Ph.D. (Instituto de Química, Universidade Federal de Pernambuco, Recife, PE, Brazil) for the X-ray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madson de Godoi Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Godoi Pereira, M., Korn, M., Santos, B.B. et al. Vermicompost for Tinted Organic Cationic Dyes Retention. Water Air Soil Pollut 200, 227–235 (2009). https://doi.org/10.1007/s11270-008-9906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9906-6

Keywords

Navigation