Skip to main content
Log in

Deposition trend of subchronic exposure of copper oxide nanoparticles (CuO-NPs) and its effect on the antioxidant system of Labeo rohita

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles are used in various fields. The increased use also enhances the release of these particles into the aquatic environment. CuO-NPs cause toxicity to every stage of aquatic organisms’ lives. This study investigates the effects of CuO-NPs on the antioxidant system of rohu (Labeo rohita). Four treatment groups were maintained in this study including; T0 (control), T1 (0.5 µg/L), T2 (1 mµ/L) and T3 (1.5 mµ/L) CuO-NPs for 45 days. 25% of water was exchanged on daily basis with redosing with CuO-NPs. The samples were taken for antioxidant analysis after 45 days. The samples of gill, heart, liver and kidney were analyzed with graphite furnace atomic absorption spectroscopy to measure the absorbed concentration of Cu. Results showed an increase in Cu accumulation in tissues (P ≤ 0.001) in all the treatments compared to control. The accumulation pattern of Cu was gill > kidney > liver > heart. Besides, the treatment also disturbs the GST level in the liver, heart, kidney and gill tissue. A sharp decline in GST activities (P ≤ 0.05) was observed due to raised in MDA content. The high GSH level (P ≤ 0.001) in liver indicates an alteration in the defensive mechanism against. This study concluded that Cu has more potential to deposit in soft tissues from CuO-NPs and cause disruption in antioxidant defenses by raising the glutathione (GSH) level. This study recommended taking preventive measures for minimizing the entry of CuO-NPs into the aquatic environment and building up in the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asghar, M.S., Qureshi, N.A., Jabeen, F., Khan, M.S., Shakeel, M., Chaudhry, A.S.: Ameliorative effects of selenium in ZnO NP-induced oxidative stress and hematological alterations in Catla catla. Biol. Trace Elem. Res. 186(1), 279–287 (2018)

    CAS  Google Scholar 

  2. Asghar, M.S., Qureshi, N.A., Jabeen, F., Khan, M.S., Shakeel, M., Noureen, A.: Toxicity of zinc nanoparticles in fish: a critical review. J. Biodivers. Environ. Sci. 7(1), 431–439 (2015)

    Google Scholar 

  3. Shakeel, M., Jabeen, F., Iqbal, R., Chaudhry, A.S., Zafar, S., Ali, M., Khan, M.S., Khalid, A., Shabbir, S., Asghar, M.S.: Assessment of titanium dioxide nanoparticles (TiO2-NPs) induced hepatotoxicity and ameliorative effects of Cinnamomum cassia in Sprague–Dawley rats. Biol. Trace Elem. Res. 182(1), 57–69 (2018)

    CAS  Google Scholar 

  4. Khan, M.S., Qureshi, N.A., Jabeen, F.: Assessment of toxicity in fresh water fish Labeo rohita treated with silver nanoparticles. Appl. Nanosci. 7(5), 167–179 (2017)

    CAS  Google Scholar 

  5. Khan, M.S., Jabeen, F., Qureshi, N.A., Asghar, M.S., Shakeel, M., Noureen, A.: Toxicity of silver nanoparticles in fish: a critical review. J. Biol. Environ. Sci. 6(5), 211–227 (2015)

    Google Scholar 

  6. Raza, A., Javed, S., Qureshi, M.Z., Khan, M.S.: Synthesis and study of catalytic application of l-methionine protected gold nanoparticles. Appl. Nanosci. 7(7), 429–437 (2017)

    CAS  Google Scholar 

  7. Ramsden, C., Henry, T., Handy, R.: Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat. Toxicol. 126, 404–413 (2013)

    CAS  Google Scholar 

  8. Khan, M.S., Qureshi, N.A., Jabeen, F., Wajid, M., Sabri, S., Shakir, M.J.F.S.: The role of garlic oil in the amelioration of oxidative stress and tissue damage in rohu Labeo rohita treated with silver nanoparticles. Fish Sci 86(2), 255–269 (2020)

    CAS  Google Scholar 

  9. Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M.S., Khan, M.S., Chaudhry, A.S.: Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol. Trace Elem. Res. 172(1), 1–36 (2016)

    CAS  Google Scholar 

  10. Khan, M.S., Jabeen, F., Asghar, M.S., Qureshi, N., Shakeel, M., Noureen, A., Shabbir, S.: Role of nao-ceria in the amelioration of oxidative stress: current and future applications in medicine. Int. J. Biosci. 6(8), 89–109 (2015)

    CAS  Google Scholar 

  11. Hamid, A., Khan, M.U., Yaqoob, J., Umar, A., Rehman, A., Javed, S., Sohail, A., Anwar, A., Khan, M., Ali, A.: Assessment of mercury load in river Ravi, urban sewage streams of Lahore Pakistan and its impact on the oxidative stress of exposed fish. J. Biol. Environ. Sci. 8(4), 63–72 (2016)

    CAS  Google Scholar 

  12. Ingle, A.P., Duran, N., Rai, M.: Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl. Microbiol. Biotechnol. 98(3), 1001–1009 (2014)

    Article  CAS  Google Scholar 

  13. Bebianno, M., Geret, F., Hoarau, P., Serafim, M., Coelho, M., Gnassia-Barelli, M., Romeo, M.: Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers 9(4–5), 305–330 (2004)

    Article  CAS  Google Scholar 

  14. Ahmad, S., Gull, M., Shah, A., Khan, F.U., Rafiq, M., Lutfullah, G., Khan, A.Z., Amin, F., Azhar, N., Khan, M.S.: Antimicrobial, antioxidant and cytotoxic potential of aerial parts of Monotheca buxifolia. J. Math. Fundam. Sci. 51(2), 138–151 (2019)

    Article  CAS  Google Scholar 

  15. Asghar, M.S., Khan, M.S., Aziz, N., Qurashi, F.J., Wajid, M., Farooq, Z.: Antioxidant potential of Allium sativum, Cinnamomum zeylanicum and Azadirachta indica against free radicals and their antimicrobial activity against isolated microbes from diseased Tilapia. J. Entomol. Zool. Stud. 5(55), 1973–1979 (2017)

    Google Scholar 

  16. Khan, M.U., Qurashi, N.A., Khan, M.S., Jabeen, F., Umar, A., Yaqoob, J., Wajid, M.: Generation of reactive oxygen species and their impact on the health related parameters: a critical review. Int J Biosci 9(1), 303–323 (2016)

    CAS  Google Scholar 

  17. Khan, M.S., Quershi, N.A., Jabeen, F., Asghar, M., Shakeel, M.: Analysis of minerals profile, phenolic compounds and potential of garlic (Allium sativum) as antioxidant scavenging the free radicals. Int. J. Biosci. 8(4), 72–82 (2016)

    Article  CAS  Google Scholar 

  18. Selden, R.L., Warner, R.R., Gaines, S.D.: Ontogenetic shifts in predator diet drive tradeoffs between fisheries yield and strength of predator-prey interactions. Fish. Res. 205, 11–20 (2018)

    Article  Google Scholar 

  19. Hélias, A., Langlois, J., Fréon, P.: Fisheries in life cycle assessment: operational factors for biotic resources depletion. Fish Fish. 19(6), 951–963 (2018)

    Article  Google Scholar 

  20. Najdegerami, E.H., Bakhshi, F., Lakani, F.B.: Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiol. Biochem. 42(2), 457–465 (2016)

    CAS  Google Scholar 

  21. APHA: Standard Methods of Water and Wastewater, 21st edn., pp 2–61. American Public Health Association, Washington, DC. (2005)

    Google Scholar 

  22. Claiborne, A.: Catalase activity. In: Greenwald, R.A. (ed.) Handbook of methods for oxygen radical research, pp 283–284. CRC Press, Boca Raton, FL (1985)

    Google Scholar 

  23. Marklund, S. and Marklund, G.: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3), 469–474 (1974)

    CAS  Google Scholar 

  24. Rojas-Hernandez, N., Véliz, D., Vega-Retter, C.: Selection of suitable reference genes for gene expression analysis in gills and liver of fish under field pollution conditions. Sci. Rep. 9(1), 1–8 (2019)

    CAS  Google Scholar 

  25. Jollow D.J., Mitchell J.R., Zampaglione N., Gillette J.R.: Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11, 151–169 (1974)

    CAS  Google Scholar 

  26. Shaw, B.J., Handy, R.D.: Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Aquat. Toxicol. 76(2), 111–121 (2006)

    CAS  Google Scholar 

  27. Tunçsoy, M., Duran, S., Ay, Ö., Cicik, B., Erdem, C.: Accumulation of copper in gill, liver, spleen, kidney and muscle tissues of Clarias gariepinus exposed to the metal singly and in mixture with chitosan. Bull. Environ. Contam. Toxicol. 97(4), 486–489 (2016)

    Google Scholar 

  28. Ali, H., Khan, E.: Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 16(3), 903–917 (2018)

    CAS  Google Scholar 

  29. Cicik, B.: The effects on metal accumulation in the liver, gill and muscle tissues of carp (Cyprinus carpio L.) of copper–zinc interaction. Turk. J. Environ. Ecol. 48, 32–36 (2003)

    Google Scholar 

  30. Wang, T., Chen, X., Long, X., Liu, Z., Yan, S.: Copper nanoparticles and copper sulphate induced cytotoxicity in hepatocyte primary cultures of Epinephelus coioides. PloS One 11(2), e0149484 (2016). https://doi.org/10.1371/journal.pone.0149484

    Article  CAS  Google Scholar 

  31. Mansouri, B., Maleki, A., Johari, S.A., Shahmoradi, B., Mohammadi, E., Shahsavari, S., Davari, B.: Copper bioaccumulation and depuration in common carp (Cyprinus carpio) following co-exposure to TiO2 and CuO nanoparticles. Arch. Environ. Contam. Toxicol. 71(4), 541–552 (2016)

    CAS  Google Scholar 

  32. Zhao, J., Wang, Z., Liu, X., Xie, X., Zhang, K., Xing, B.: Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J. Hazard. Mater. 197, 304–310 (2011)

    CAS  Google Scholar 

  33. Sohail, M., Khan, M.N., Chaudhry, A.S., Qureshi, N.A.: Bioaccumulation of heavy metals and analysis of mineral element alongside proximate composition in foot, gills and mantle of freshwater mussels (Anodonta anatina). Rendiconti Lincei 27(4), 687–696 (2016)

    Google Scholar 

  34. Abdel-Khalek, A.A., Kadry, M.A., Badran, S.R., Marie, M.-A.S.: Comparative toxicity of copper oxide bulk and nano particles in Nile tilapia; Oreochromis niloticus: biochemical and oxidative stress. J. Basic Appl. Zool. 72, 43–57 (2015)

    Article  CAS  Google Scholar 

  35. Vijayavel, K., Gopalakrishnan, S., Thilagam, H., Balasubramanian, M.: Dietary ascorbic acid and α-tocopherol mitigates oxidative stress induced by copper in the thornfish Terapon jarbua. Sci. Total Environ. 372(1), 157–163 (2006)

    Article  CAS  Google Scholar 

  36. Jun, X., Zhao, H.Z., LU, G.H.: Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. Biomed. Environ. Sci. 26(9), 742–749 (2013)

  37. Khan, M.S., Qureshi, N.A., Jabeen, F., Asghar, M.S., Shakeel, M., Fakhar-e-Alam, M.: Eco-friendly synthesis of silver nanoparticles through economical methods and assessment of toxicity through oxidative stress analysis in the Labeo rohita. Biol. Trace Elem. Res. 176(2), 416–428 (2017). https://doi.org/10.1007/s12011-016-0838-5

    Article  CAS  Google Scholar 

Download references

Funding

This work is the product of the authors own efforts and did not receive funding in any form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

The ethical review board of the University approved this study.

Consent for publication

Consent was taken from each author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, A., Riaz, M.A., Shahzad, K. et al. Deposition trend of subchronic exposure of copper oxide nanoparticles (CuO-NPs) and its effect on the antioxidant system of Labeo rohita. Int Nano Lett 10, 279–285 (2020). https://doi.org/10.1007/s40089-020-00315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00315-9

Keywords

Navigation