Skip to main content
Log in

The Effect of Coating Thickness and Roughness of Nucleate Pool Boiling Heat Transfer on Nanoparticle Coated Surface

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

The influence of coating thickness and surface roughness on pool boiling heat transfer is experimentally studied over a range of surface roughness values with varied coating thickness with water at atmospheric pressure. Test surfaces used in this experiment are namely, untreated surface (Ra = 0.0899 µm), polished surface (Ra = 0.0493 µm), TiO2 nanoparticle coated surface with a roughness (Ra) ranging from 0.0338 to 0.289 µm. The surfaces were characterized with respect to contact angle, surface roughness and coating thickness. The contact angle, surface roughness and coating thickness were measured by sessile drop method, optical surface profiler and instrument thickness monitor respectively. Heat fluxes observed ranged from 52.63 to 144.73 W/cm2. Different trends were observed in the Heat Transfer Coefficient (HTC) with respect to the surface roughness and coating thickness values on the same set of heat flux. The HTC was found to increase with increasing the roughness values for untreated and polish surface but nanoparticle coated surfaces displayed different trend in HTCs. The HTC was found to increase with increasing coating thickness with all wall superheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Jakob, Heat transfer in evaporation and condensation—I. Mech. Eng. Am. Soc. Mech. Eng. 58, 643–660 (1936)

    Google Scholar 

  2. J.W. Westwater, Boiling heat transfer. Am. Sci. 47, 427–446 (1958)

    Google Scholar 

  3. H.B. Clark, P.S. Strenge, J.W. Westwater, Active sites for nucleate boiling. Chem. Eng. Prog. Symp. Ser. 5529, 103–110 (1959)

    Google Scholar 

  4. S.G. Bankoff, Ebullition from solid surfaces in the absence of a pre-existing gaseous phase. Trans. ASME 79, 735–740 (1958)

    Google Scholar 

  5. S.G. Bankoff, Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 4(1), 24–26 (1958)

    Article  MathSciNet  Google Scholar 

  6. P. Griffith, J.D. Wallis, The role of surface conditions in nucleate boiling. Chem. Eng. Prog. Symp. Ser. 56(30), 49–63 (1960)

    Google Scholar 

  7. Y.Y. Hsu, On the size range of active nucleation cavities on a heating surface, ASME. J. Heat Transf. 84, 207–216 (1962)

    Article  Google Scholar 

  8. C. Corty, A.S. Foust, Surface variables in nucleate boiling. Chem. Eng. Prog. Symp. Ser. 51(17), 1–12 (1955)

    Google Scholar 

  9. P.J. Berenson, Experiments on pool-boiling heat transfer. Int. J. Heat Mass Transf. 5, 985–999 (1962)

    Article  Google Scholar 

  10. H.M. Kurihara, J.E. Myers, The effects of superheat and surface roughness on boiling coefficients. AIChE J. 6(1), 83–91 (1960)

    Article  Google Scholar 

  11. S.T. Hsu, F.W. Schmidt, Measured variations in local surface temperatures in pool boiling of water, ASME. J. Heat Transf. 83, 254–260 (1961)

    Article  Google Scholar 

  12. P.J. Marto, W.M. Rohsenow, Effects of surface conditions on nucleate pool boiling of sodium, ASME. J. Heat Transf. 88, 196–204 (1966)

    Article  Google Scholar 

  13. R.L. Webb, The evolution of enhanced surface geometries for nucleate boiling. Heat Transf. Eng. 2, 46–69 (1981)

    Article  Google Scholar 

  14. R.L. Webb, Odyssey of the enhanced boiling surface, ASME. J. Heat Transf. 126, 1051–1059 (2004)

    Article  Google Scholar 

  15. K. Bier, D. Gorenflo, M. Salam, Y. Tanes Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness, in Proceedings of the sixth international heat transfer conference, Toronto, Canada, Vol. 1, pp. 151–156 (1978)

  16. S.K.R. Chowdhury, R.H.S. Winterton, Surface effects in pool boiling. Int. J. Heat Mass Transf. 28(10), 1881–1889 (1985)

    Article  Google Scholar 

  17. R.I. Vachon, G.E. Tanger, D.L. Davis, G.H. Nix, Pool boiling on polished and chemically etched stainless-steel surfaces, ASME. J. Heat Transf. 80, 231–238 (1968)

    Article  Google Scholar 

  18. V.A. Kravchenko, Y.N. Ostrovskiy, Effect of surface roughness on boiling heat transfer to light hydrocarbons and nitrogen. Heat Transf. Sov. Res. 11(1), 133–137 (1979)

    Google Scholar 

  19. V. A. Grigoriev, Y. M. Pavlov, Y. V. Ametistov, An investigation of nucleate boiling heat transfer of helium, in Proceedings of the fifth international heat transfer conference, Tokyo, Japan, pp. 45–49 (1974)

  20. W. Yan, W.L. Lin, L.M. Yan, Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness. Am. Inst. Chem. Eng. 53(12), 3062–3076 (2007)

    Article  Google Scholar 

  21. Y. Tang, B. Tang, Q. Li, L. Qing, L. Lu, K. Chen, Pool boiling enhancement by novel metallic nanoporous surface. Exp. Therm. Fluid Sci. 44, 194–198 (2013)

    Article  Google Scholar 

  22. C.Y. Lee, M.M.H. Bhuiya, K.J. Kim, Pool boiling heat transfer with nano-porous surface. Int. J. Heat mass transf. 53, 4274–4279 (2010)

    Article  Google Scholar 

  23. W. Wu, H. Bostanci, L.C. Chow, Y. Hong, M. Sua, J.P. Kizito, Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces. Int. J. Heat Mass Transf. 53, 1773–1777 (2010)

    Article  Google Scholar 

  24. S. Vemuri, K.J. Kim, Pool boiling of saturated FC-72 on nano-porous surface. Int. Commun. Heat Mass Transf. 32, 27–31 (2005)

    Article  Google Scholar 

  25. H.S. Ahn, N. Sinha, M. Zhang, D. Banerjee, S.K. Fang, R.H. Baughman, Pool boiling experiments on multi walled carbon nanotube (MWCNT) forests. J. Heat Transf. Trans. ASME 128, 1335–1342 (2006)

    Article  Google Scholar 

  26. H.S. Ahn, H.J. Jo, S.H. Kang, M.H. Kim, Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl. Phys. Lett. 7, 071908-1–071908-3 (2011)

    Google Scholar 

  27. S. Ujereh, T. Fisher, I. Mudawar, Effects of carbon nanotube arrays on nucleate pool boiling. Int. J. Heat Mass Transf. 50, 4023–4038 (2007)

    Article  Google Scholar 

  28. S. Launay, A.G. Fedorov, Y. Joshi, A. Cao, P.M. Ajayan, Hybrid micro/nanostructured thermal interfaces for pool boiling heat transfer enhancement. J. Microelectron. 37, 1158–1164 (2006)

    Article  Google Scholar 

  29. B.J. Zhang, K.J. Kim, H. Yoon, Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transf. 55, 7487–7498 (2012)

    Article  Google Scholar 

  30. E. Forrest, E. Williamson, J. Buongiorno, L.W. Huc, M. Rubner, R. Cohen, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transf. 53, 58–67 (2010)

    Article  Google Scholar 

  31. S.M. Kwark, G. Moreno, R. Kumar, H. Moon, S.M. You, Nanocoating characterization in pool boiling heat transfer of pure water. Int. J. Heat and Mass Transf. 53, 4579–4587 (2010)

    Article  Google Scholar 

  32. S. M., Kwark, M. Amaya, S. M. You, Pool boiling heat transfer characteristics of nanocoating in various working fluids. IEEE, SEMI-THERM, pp. 146–154 (2011)

  33. M.C. Lu, R. Chen, V. Srinivasan, V.P. Carey, A. Majumdar, Critical heat flux of pool boiling on Si nanowire array-coated surfaces. Int. J. Heat Mass transfer 54, 5359–5367 (2011)

    Article  Google Scholar 

  34. B. Stutz, C.H.S. Morceli, M.F. Silva, S. Cioulachtjian, J. Bonjour, Influence of nanoparticle surface coating on pool boiling. Exp. Therm. Fluid Sci. 35, 1239–1249 (2011)

    Article  Google Scholar 

  35. B. Shi, Y.B. Wang, K. Chen, Pool boiling heat transfer enhancement with copper nanowire arrays. Appl. Therm. Eng. 75, 115–121 (2015)

  36. R.R. Schultz, R. Cole, Uncertainty analysis of boiling nucleation. AIChE Symp. Ser. 75, 32–38 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudev Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Bhaumik, S. The Effect of Coating Thickness and Roughness of Nucleate Pool Boiling Heat Transfer on Nanoparticle Coated Surface. J. Inst. Eng. India Ser. E 97, 55–62 (2016). https://doi.org/10.1007/s40034-015-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-015-0063-3

Keywords

Navigation