Skip to main content

Review on Pool Boiling Heat Transfer Enhancement by Surface Fabrication Using Various Surface Coating Methods

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering

Abstract

This review paper includes different coating methods with different nanocoating material for enhancing the surface properties. Due to surface properties (wettability, surface contact angle, roughness, porosity, etc.) and thickness of nanocoating, heat transfer rate increases. Nucleate boiling heat transfer and critical heat flux are major factors which decides the heat transfer rate. So if these factors are controlled, then heat transfer rate automatically controlled. Future scope in this field is also presented in this paper. Coating methods, by which non-metal material coated on metal are also listed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Shiro, The maximum and minimum values of the heat q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transf. 27(7), 959–970 (1984)

    Article  Google Scholar 

  2. C. Pais, R.L. Webb, Literature survey of pool boiling on enhanced surfaces. ASHRAE Trans. 16(pt 1), 79–89 (1991)

    Google Scholar 

  3. L.H. Chien, R.L. Webb, A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transf. 41(14), 2183–2195 (1998)

    Article  MATH  Google Scholar 

  4. Milton, Heat exchange system. Foreign Aff. 91(5), 1689–1699 (1968)

    Google Scholar 

  5. J.Y. Chang, S.M. You, Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transf. 40(18), 4437–4447 (1997)

    Article  Google Scholar 

  6. T.W.S.S.M. You, Enhance Boiling Heat Transfer with application to cooling of electonic equipment.Pdf. (1992)

    Google Scholar 

  7. J.Y. Chang, S.M. You, Enhanced boiling heat transfer from micro-porous surfaces: Effects of a coating composition and method. Int. J. Heat Mass Transf. 40(18), 4449–4460 (1997)

    Article  Google Scholar 

  8. R.W. Bowring, Physical Model, Based on Bubble Detachment, and Calculation of Steam Yoidage in the Sub cooled Region of a Heated Channel, pp. 135–142 (1962)

    Google Scholar 

  9. S.G. Liter, M. Kaviany, Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int. J. Heat Mass Transf. 44(22), 4287–4311 (2001)

    Article  Google Scholar 

  10. Y. Haramura, Y. Katto, A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transf. 26(3), 389–399 (1983)

    Article  MATH  Google Scholar 

  11. S.G. Kandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transf. 123(6), 1071–1079 (2001)

    Article  Google Scholar 

  12. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 50(19–20), 4105–4116 (2007)

    Article  Google Scholar 

  13. S.D. Park et al., Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux. Appl. Phys. Lett. 97(2) (2010)

    Google Scholar 

  14. J.W. Westwater, Boiling Heat Transf. 101(5), 370–377 (1959)

    Google Scholar 

  15. S.M. You, J.H. Kim, K.H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 83(16), 3374–3376 (2003)

    Article  Google Scholar 

  16. N. Zuber, Hydrodynamic Aspects Of Boiling Heat Transfer (Thesis) (1959)

    Google Scholar 

  17. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  18. H. Kim, J. Kim, M.H. Kim, Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids. Int. J. Heat Mass Transf. 49(25–26), 5070–5074 (2006)

    Article  Google Scholar 

  19. P. Vassallo, R. Kumar, S. D’Amico, Pool boiling heat transfer experiments in silica-water nano-fluids. Int. J. Heat Mass Transf. 47(2), 407–411 (2004)

    Article  Google Scholar 

  20. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl. Phys. Lett. 89(15) (2006)

    Google Scholar 

  21. I.C. Bang, S. Heung Chang, Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf. 48(12), 2407–2419 (2005)

    Google Scholar 

  22. H.D. Kim, J. Kim, M.H. Kim, Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int. J. Multiph. Flow 33(7), 691–706 (2007)

    Article  Google Scholar 

  23. H. Kim, M. Kim, Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids. Heat Mass Transf. Und Stoffuebertragung 45(7), 991–998 (2009)

    Article  Google Scholar 

  24. M. Chopkar, A.K. Das, I. Manna, P.K. Das, Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool. Heat Mass Transf. Und Stoffuebertragung 44(8), 999–1004 (2008)

    Article  Google Scholar 

  25. E. Forrest, E. Williamson, J. Buongiorno, L.W. Hu, M. Rubner, R. Cohen, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transf. 53(1–3), 58–67 (2010)

    Article  Google Scholar 

  26. D. Wen, M. Corr, X. Hu, G. Lin, Boiling heat transfer of nanofluids: The effect of heating surface modification. Int. J. Therm. Sci. 50(4), 480–485 (2011)

    Article  Google Scholar 

  27. D. Wen, Influence of nanoparticles on boiling heat transfer. Appl. Therm. Eng. 41, 2–9 (2012)

    Article  Google Scholar 

  28. M. Kole, T.K. Dey, Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids. Appl. Therm. Eng. 37, 112–119 (2012)

    Article  Google Scholar 

  29. J.Y. Jung, E.S. Kim, Y.T. Kang, Stabilizer effect on CHF and boiling heat transfer coefficient of alumina/water nanofluids. Int. J. Heat Mass Transf. 55(7–8), 1941–1946 (2012)

    Article  Google Scholar 

  30. J. Tehver, H. Sui, V. Temkina, Heat transfer and hysteresis phenomena in boiling on porous plasma-sprayed surface. Exp. Therm. Fluid Sci. 5(6), 714–727 (1992)

    Article  Google Scholar 

  31. G.S. Hwang, M. Kaviany, Critical heat flux in thin, uniform particle coatings. Int. J. Heat Mass Transf. 49(5–6), 844–849 (2006)

    Article  Google Scholar 

  32. C.H. Li et al., Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures. Int. J. Heat Mass Transf. 54(15–16), 3146–3155 (2011)

    Article  Google Scholar 

  33. Y. Takata et al., Effect of surface wettability on boiling and evaporation. Energy 30(2–4), 209–220 (2005)

    Google Scholar 

  34. S. Vemuri, K.J. Kim, Pool boiling of saturated FC-72 on nano-porous surface. Int. Commun. Heat Mass Transf. 32(1–2), 27–31 (2005)

    Article  Google Scholar 

  35. S.S. Hsieh, C.J. Weng, Nucleate pool boiling from coated surfaces in saturated R-134a and R-407c. Int. J. Heat Mass Transf. 40(3), 519–532 (1997)

    Article  Google Scholar 

  36. J.H. Kim, K.N. Rainey, S.M. You, J.Y. Pak, Mechanism of nucleate boiling heat transfer enhancement from microporous surfaces in saturated FC-72. J. Heat Transfer 124(3), 500–506 (2002)

    Article  Google Scholar 

  37. C. Li, Z. Wang, P.I. Wang, Y. Peles, N. Koratkar, G.P. Peterson, Nanostructured copper interfaces for enhanced boiling. Small 4(8), 1084–1088 (2008)

    Article  Google Scholar 

  38. T.J. Hendricks, S. Krishnan, C. Choi, C. Chang, B. Paul, Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int. J. Heat Mass Transf. 53(15–16), 3357–3365 (2010)

    Article  Google Scholar 

  39. B. Feng, K. Weaver, G.P. Peterson, Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl. Phys. Lett. 100(5), 98–101 (2012)

    Google Scholar 

  40. Y. Wen-Jei, H. Takizawa, D.L. Vrable, Augmented boiling on copper-graphite composite surface. Int. J. Heat Mass Transf. 34(11), 2751–2758 (1991)

    Article  Google Scholar 

  41. H.S. Liang, W.J. Yang, Nucleate pool boiling heat transfer in a highly wetting liquid on micro-graphite-fiber composite surfaces. Int. J. Heat Mass Transf. 41(13), 1993–2001 (1998)

    Article  Google Scholar 

  42. M.S. El-genk, J.L. Parker, Pool Boiling in Saturated and Subcooled-7100 Dielectric Fluid from a Porous Graphite Surface, pp. 655–662 (2004)

    Google Scholar 

  43. J.L. Parker, M.S. El-Genk, Effect of surface orientation on nucleate boiling of FC-72 on porous graphite. J. Heat Transf. 128(11), 1159–1175 (2006)

    Article  Google Scholar 

  44. H.S. Ahn, N. Sinha, M. Zhang, D. Banerjee, S. Fang, R.H. Baughman, Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests. J. Heat Transf. 128(12), 1335–1342 (2006)

    Article  Google Scholar 

  45. X. Dai et al., Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 102(16) (2013)

    Google Scholar 

  46. A.R. Betz, J. Xu, H. Qiu, D. Attinger, Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97(14), 1–4 (2010)

    Article  Google Scholar 

  47. A.R. Betz, J.R. Jenkins, C.J. Kim, D. Attinger, Significant boiling enhancement with surfaces combining superhydrophilic and superhydrophobic patterns, in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems, pp. 1193–1196 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Priyadarshini Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S.P., Singh, R., Misra, R.D. (2021). Review on Pool Boiling Heat Transfer Enhancement by Surface Fabrication Using Various Surface Coating Methods. In: Pandey, K., Misra, R., Patowari, P., Dixit, U. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-7711-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7711-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7710-9

  • Online ISBN: 978-981-15-7711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics