Skip to main content
Log in

Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10−8 m2/s was obtained for LC samples while the lowest 0.83 × 10−8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.S. Huang, C.A. Titchenal, B.A. Meilleur, Nutrient composition of Hawaiian taro corms and breadfruit. J. Food Compos. Anal. 13, 859–864 (2000)

    Article  Google Scholar 

  2. P. Kaushal, V. Kumar, H.K. Sharma, Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT Food Sci. Technol. 48, 59–68 (2012)

    Article  Google Scholar 

  3. Aboubakar, Y.N. Njintang, J. Scher, C.M.F. Mbofung, Physicochemical, thermal properties and micro structure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 86(2), 294–305 (2008)

    Article  Google Scholar 

  4. M. Kaur, P. Kaushal, K.S. Sandhu, Studies on physicochemical and pasting properties of taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. J. Food Sci. Technol. 48, 1–7 (2011)

    Article  Google Scholar 

  5. M.S. Ammar, A.E. Hegazy, S.H. Bedeir, Using of taro flour as partial substitute of wheat flour in bread making. World J. Dairy Food Sci. 4(2), 94–99 (2009)

    Google Scholar 

  6. C.A.I. Emmanuel, N.C. Osuchukwu, L. Oshiele, Functional and sensory properties of wheat (Aestium triticium) and taro flour (Colocasia esculenta) composite bread. Afr. J. Food Sci. 4(5), 248–253 (2010)

    Google Scholar 

  7. M. Himeda, Y.N. Njintang, E. Fombang, B. Facho, P. Kitissou, C.M.F. Mbofung, J. Scher, Chemical composition, functional andsensory characteristics of wheat-taro composite flours and biscuits. J. Food Sci. Technol. 51(9), 1893–1901 (2014)

    Article  Google Scholar 

  8. V. Kumar, H.K. Sharma, P. Kaushal, K. Singh, Optimization of taro-wheat composite flour cake using Taguchi technique. Food Meas. 9(1), 35–51 (2015)

    Article  Google Scholar 

  9. W.K. Nip, C.S. Whitaker, D. Vargo, Application of taro flour in cookie formulations. Int. J. Food Sci. Technol. 29, 463–468 (1994)

    Article  Google Scholar 

  10. P. Kaushal, H.K. Sharma, Effect of Incorporating Taro (Colocasia esculenta), Rice (Oryza sativa), and Pigeon Pea (Cajanus cajan) Flour Blends on Noodle Properties. Int. J. Food Prop. 17(4), 765–781 (2014)

    Article  Google Scholar 

  11. Y.N. Njintang, C.M.F. Mbofung, G.K. Moates, Functional properties of five varieties of taro flour, and relationship to creep recovery and sensory characteristics of achu (taro based paste). J. Food Eng. 82, 114–120 (2007)

    Article  Google Scholar 

  12. V. Kumar, H.K. Sharma, K. Singh, R.P. Singh, Optimization of process parameters for the production of taro chips using RSM with fuzzy modeling. Food Meas. 9(3), 400–413 (2015)

    Article  Google Scholar 

  13. T.S. Workneh, V. Raghavan, Y. Gariepy, Microwave assisted hot air ventilation drying of tomato slices, in International Conference on Food Engineering and Biotechnology IPCBEE, vol 9 (IACSIT Press, Singapore 2011)

  14. M. Zhang, J. Tang, A.S. Mujumdar, S. Wang, Trends in microwave related drying of fruits and vegetables. Trends Food Sci. Technol. 17, 524–534 (2006)

    Article  Google Scholar 

  15. U. Erle, H. Shubert, Combined osmotic and microwave-vacuum dehydration of apples and strawberries. J. Food Eng. 49(2), 193–199 (2001)

    Article  Google Scholar 

  16. S. Mishra, V. Kumar, H.K. Sharma, Preparation and modeling of potato powder by thin layer microwave drying. Potato J. 39(2), 145–154 (2012)

    Google Scholar 

  17. J. Wang, Y.S. Xiong, Y. Yu, Microwave drying characteristics of potato and the effect of different microwave powers on the dried quality of potato. Eur. Food Res. Technol. 219, 500–506 (2004)

    Article  Google Scholar 

  18. A. Harish, M. Rashmi, T.P. Krishna Murthy, B.M. Blessy, S. Ananda, Mathematical modeling of thin layer microwave drying kinetics of elephant foot yam (Amorphophallus paeoniifolius). Int. Food Res. J. 21(3), 1081–1087 (2014)

    Google Scholar 

  19. M. Bhattacharya, P.P. Srivastav, H.N. Mishra, Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). J. Food Sci. Technol. 52(4), 2013–2022 (2015)

    Article  Google Scholar 

  20. H. Darvishi, A. Banakar, M. Zarein, Mathematical modeling and thin layer drying kinetics of carrot slices. Global J. Sci. Front. Res. Math. Decis. Sci. 12(7), 57–64 (2012)

    Google Scholar 

  21. S. Celen, K. Kahveci, Microwave drying behaviour of apple slices. J. Process Mech. Eng. 227(4), 264–272 (2013)

    Article  Google Scholar 

  22. J. Wang, J.S. Wang, Y. Yu, Microwave drying characteristics and dried quality of pumpkin. Int. J. Food Sci. Technol. 42, 148–156 (2007)

    Article  Google Scholar 

  23. Aboubakar, Y.N. Njintang, J. Scher, C.M.F. Mbofung, Texture, microstructure and physicochemical characteristics of taro (Colocasia esculenta) as influenced by cooking conditions. J. Food Eng. 91, 373–379 (2009)

    Article  Google Scholar 

  24. D.M. Bruce, Exposed-layer barley drying: three models fitted to new data up to 150 °C. J. Agric. Eng. Res. 32, 337–348 (1985)

    Article  Google Scholar 

  25. G.E. Page, Factors influencing the maximum rates of air drying shelled corn in thin layers, M.S. Thesis, Department of Mechanical Engineering, Purdue University, Purdue 1949

  26. S.M. Henderson, S. Pabis, Grain drying theory II: temperature effects on drying coefficients. J. Agric. Eng. Res. 6, 169–174 (1961)

    Google Scholar 

  27. C.Y. Wang, R.P. Singh, Use of variable equilibrium moisture content in modelling rice drying. Trans. ASAE 11, 668–672 (1978)

    Google Scholar 

  28. L.M. Diamante, P.A. Munro, Mathematical modelling of hot air drying of sweet potato slices. Int. J. Food Sci. Technol. 26(1), 99–109 (1991)

    Article  Google Scholar 

  29. I.T. Togrul, D. Pehlivan, Mathematical modeling of solar drying of apricots in thin layers. J. Food Eng. 55, 209–216 (2002)

    Article  Google Scholar 

  30. L.R. Verma, R.A. Bucklin, J.B. Endan, F.T. Wratten, Effects of drying air parameters on rice drying models. Trans. ASAE 28, 296–301 (1985)

    Article  Google Scholar 

  31. J. Crank, The mathematics of diffusion (Clarendon Press, Oxford, 1975)

    MATH  Google Scholar 

  32. O. Belma, D. Gokce, Thin layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. Food Eng. 83, 541–549 (2007)

    Article  Google Scholar 

  33. G. Dadali, D.K. Apar, B. Ozbek, Microwave drying kinetics of okra. Drying Technol. 25(5), 917–924 (2007)

    Article  Google Scholar 

  34. J.I. Mate, C. Quartaert, G. Meerdink, K. Van’t Riet, Effect of blanching on structural quality of dried potato slices. J. Agric. Food Chem. 46, 676–681 (1998)

    Article  Google Scholar 

  35. H.W. Xiao, X.D. Yao, H. Lin, W.X. Yang, J.S. Meng, Z.J. Gao, Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. J. Food Process Eng 35, 370–390 (2012)

    Article  Google Scholar 

  36. A.R.P. Kingsly, R.K. Goyal, M.R. Manikantan, S.M. Ilyas, Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int. J. Food Sci. Technol. 42, 65–69 (2007)

    Article  Google Scholar 

  37. E. Troncoso, F. Pedreschi, Modeling of textural changes during drying of potato slices. J. Food Eng. 82, 577–584 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sharma, H.K. & Singh, K. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices. J. Inst. Eng. India Ser. A 97, 53–61 (2016). https://doi.org/10.1007/s40030-016-0147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-016-0147-1

Keywords

Navigation