Skip to main content

Mathematical Modeling of Thin Layer Drying of Moringa Oleifera by a Combined Microwave and Heat Pump Drying

  • Conference paper
  • First Online:
Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020) (MMMS 2020)

Abstract

The study was performed to determine the mathematical modeling of thin layer drying model, the effective moisture diffusivity and the activation energy of Moringa during a combined microwave and heat pump drying process. The thin layer drying tests were conducted at three different of drying temperature levels of 35, 40, and 45 °C and microwave power levels of 270, 385 and 525 W. Eight different thin layer drying models were fitted to the experimental data.

The Page model was the most adequate model for describing the thin layer drying of Moringa. Effective moisture diffusivity during drying of Moringa varied from 0.71 × 10−8 to 1.63 × 10−8 m2/s. The activation energy values varied from 34.99 to 47.01 kJ/mol over the range of temperature and microwave power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akpinar, E.K., Sarsilmaz, C., Yildiz, C.: Mathematical modeling of a thin layer drying of apricots in a solar energized rotary dryer. Int. J. Energy Res. 28, 739–752 (2004)

    Article  Google Scholar 

  2. Brooker, D.B., Bakker-Arkema, F.W., Hall, C.W.: Drying Cereal Grains. The AVI Publishing Company Inc., Westport, Connecticut (1974)

    Google Scholar 

  3. Danae, D., Tzia, K., Gekas, V.: A knowledge base for the apparent mass diffusion coefficient (Deff) of foods. Int. J. Food Prop. 3(1), 1–14 (2000)

    Article  Google Scholar 

  4. Palacios, T.R., Potes, L.B., Montenegro, R.A., Giner, S.A.: Peanut drying kinetics: determination of the effective diffusivity for in-shell and shelled peanuts by applying a short-time analytical model to measured data. In: Proceedings of the 14th International Drying Symposium B, pp. 1448–1455 (2004)

    Google Scholar 

  5. Doymaz, I.: Drying behaviour of green beans. J. Food Eng. 69, 161–165 (2005)

    Article  Google Scholar 

  6. Bhattacharya, M., Srivastav, P.P., Mishra, H.N.: Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). J. Food Sci. Technol. 52(4), 2013–2022 (2015)

    Article  CAS  Google Scholar 

  7. Alibas, I.: Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. J. Food Sci. Technol. 34(2), 394–401 (2014)

    Article  Google Scholar 

  8. Basunia, M.A., Abe, T.: Moisture desorption isotherms of medium-grain rough rice. J. Stored Prod. Res. 37, 205–219 (2001)

    Article  Google Scholar 

  9. Dev, S.R.S., Geetha, P., Orsat, V., Gariépy, Y., Raghavan, G.S.V.: Effects of Microwave - assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technol. 29, 1452–1458 (2011)

    Article  CAS  Google Scholar 

  10. Sinicio, R., Muir, W.E., Jayas, D.S., Cenkowski, S.: Thin-layer drying and wetting of wheat. Postharvest Biol. Technol. 5, 261–275 (1995)

    Article  Google Scholar 

  11. Sacilik, K., Keskin, R., Elicin, A.K.: Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng. 73, 231–238 (2006)

    Article  Google Scholar 

  12. Bruce, D.M.: Exposed-layer barley drying: three models fitted to new data up to 150 °C. J. Agric. Eng. Res. 32, 337–347 (1985)

    Article  Google Scholar 

  13. Page, G.E.: Factors influencing the maximum rates of air drying shelled corn in thin layers. M.S. thesis, Department of Mechanical Engineering, Purdue University, Purdue (1949)

    Google Scholar 

  14. White, G.M., Ross, J.J., Ponelert, R.: Fully exposed drying of popcorn. Trans. ASAE 24, 466–468 (1981)

    Article  Google Scholar 

  15. Henderson, S.M., Pabis, S.: Grain drying theory. II. Temperature effects on drying coefficients. J. Agric. Eng. Res. 6, 169–174 (1961)

    Google Scholar 

  16. Wang, C.Y., Singh, R.P.: Use of variable equilibrium moisture content in modeling rice drying. Trans. ASAE 11, 668–672 (1978)

    Google Scholar 

  17. Verma, L.R., Bucklin, R.A., Endan, J.B., Wratten, F.T.: Effects of drying air parameters on rice drying models. Trans. ASAE 28, 296–301 (1985)

    Article  Google Scholar 

  18. Beigi, M.: Hot air drying of apple slices: dehydration characteristics and quality assessment. J. Heat and Mass Transfer 52(8), 1435–1442 (2016)

    Article  CAS  Google Scholar 

  19. Demiray, E., Tulek, Y.: Thin-layer drying of tomato (Lycopersicum esculentum Mill. CV. Rio Grande) slices in a convective hot air dryer. J. Heat and Mass Transfer 48(5), 841–847 (2012)

    Article  Google Scholar 

  20. Duc, L.A., Han, J.W., Keum, D.H.: Thin layer drying characteristics of rapeseed (Brassica napus L.). J. Stored Prod. Res. 47, 32–38 (2011)

    Article  Google Scholar 

  21. Crank, J.: The Mathematic of Diffusion, 2nd edn. Oxford University Press, Oxford (1975)

    Google Scholar 

  22. Duc, L.A., Hong, S.-J., Han, J.-W., Keum, D.-H.: Estimation of effective moisture diffusivity of rapeseed (Brassica napus L.). J. Biosyst. Eng. 33(5), 296–302 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Anh Duc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duc, L.A., Khai, T.D., Hay, N. (2021). Mathematical Modeling of Thin Layer Drying of Moringa Oleifera by a Combined Microwave and Heat Pump Drying. In: Long, B.T., Kim, YH., Ishizaki, K., Toan, N.D., Parinov, I.A., Vu, N.P. (eds) Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020). MMMS 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-69610-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69610-8_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69609-2

  • Online ISBN: 978-3-030-69610-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics