Skip to main content

Advertisement

Log in

Antagonistic Actinomycetes Mediated Resistance in Solanum lycopersicon Mill. Against Rhizoctonia solani Kühn

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Actinomycetes are a major group of beneficial microbes, which can be explored as spanking alternative to chemical fungicides for providing defense against phytopathogens. Rhizoctonia solani is a major havoc causing severe loss to many crops. Biological measures for fungal disease management are desired over the available chemical/synthetic fungicides owing to their safety towards non-target organisms. In the present study, 34 actinomycetes were isolated from vermicompost. Out of them, twelve revealed antifungal activity related to Indole acetic acid (IAA) production, siderophores and plant growth promotion. Under greenhouse and field conditions, these potent strains remarkably enhanced yield attributes and disease diminution as compared to untreated control. A significant disease reduction of 47–63 % against R. solani was observed in tomato plants pretreated with actinomycetes. Furthermore, induction in defense related enzymes such as peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, accumulation of phenolics and flavonoids were also observed in actinomycetes treated plants. Morphological and molecular characterization analysis identified these potent isolates as Streptomyces sp. NBM3, Streptomyces sp. NBM2, Streptomyces sp. NBM1, Streptomyces sp. NBM12 and Streptomyces sp. NBM8. The present findings suggest that these microbes can be utilized for significant enhancement of plant growth and augmentation of defense related enzymes in order to cope up with R. solani induced stress, thereby contributing to crop health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308(1–2):161–174

    Article  CAS  Google Scholar 

  2. Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  3. Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbial Rev 36(4):862–876

    Article  CAS  Google Scholar 

  4. Doumbou CL, Salove MH, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  5. Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113(5):1154–1164

    Article  CAS  PubMed  Google Scholar 

  6. Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbial Biotechnol 97(22):9621–9636

    Article  CAS  Google Scholar 

  7. Cuppels DA, Higham J, Traquair JA (2013) Efficacy of selected streptomycetes and a streptomycete + pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biol Control 67:361–372

    Article  Google Scholar 

  8. Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1:1–19

    Article  Google Scholar 

  9. Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  10. Montealegre JR, Reyes R, Pérez LM, Herrera R, Silva P, Besoain X (2003) Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron J Biotechnol 6:115–127

    Article  Google Scholar 

  11. Bains PS, Bennypaul HS, Lynch DR, Kawchuk LM, Schaupmeyer CA (2002) Rhizoctonia disease of potatoes (Rhizoctonia solani): Fungicidal efficacy and cultivar susceptibility. Am J Potato Res 79:99–106

    Article  Google Scholar 

  12. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. Biocontrol 56(3):365–374

    Article  Google Scholar 

  14. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  16. Holt JA, Krieg NR, Sneath PHA (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins Co., Baltimore

    Google Scholar 

  17. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69(9):5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57(10):2259–2261

    Article  CAS  PubMed  Google Scholar 

  19. Soares ACF, Sousa CDS, Garrido MDS, Perez JO (2007) Production of streptomycete inoculum in sterilized rice. Sci Agric 64(6):641–644

    Article  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  21. Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56(1):13–23

    Article  CAS  Google Scholar 

  22. Gauillard F, Richard-Forget F, Nicolas J (1993) New spectrophotometric assay for polyphenol oxidase activity. Anal Biochem 215:59–65

    Article  CAS  PubMed  Google Scholar 

  23. Zhang RQ, Zhu HH, Zhao HQ, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170(1):74–79

    Article  CAS  PubMed  Google Scholar 

  24. Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326

    Article  CAS  Google Scholar 

  25. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

  26. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  27. Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25(4):649–655

    Article  CAS  Google Scholar 

  28. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  29. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  30. Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169(1):59–65

    Article  CAS  PubMed  Google Scholar 

  31. Evangelista-Martínez Z (2014) Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol 30(5):1639–1647

    Article  PubMed  Google Scholar 

  32. Patil HJ, Srivastava AK, Kumar S, Chaudhari BL, Arora DK (2010) Selective isolation, evaluation and characterization of antagonistic actinomycetes against Rhizoctonia solani. World J Microbiol Biotechnol 26:2163–2170

    Article  CAS  Google Scholar 

  33. Harikrishnan H, Shanmugaiah V (2013) Streptomyces sp. VSMGT1014 mediated antifungal activity against fungal plant pathogens. In Prospects in Bioscience: Addressing the Issues Springer India 335-341

  34. Kanini GS, Katsifas EA, Savvides AL, Hatzinikolaou DG, Karagouni AD (2013) Greek indigenous streptomycetes as biocontrol agents against the soil-borne fungal plant pathogen Rhizoctonia solani. J Appl Microbiol 114:1468–1479

    Article  CAS  PubMed  Google Scholar 

  35. Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97

    Article  Google Scholar 

  36. Richter C, Dirks ME, Gronover CS, Prüfer D, Moerschbacher BM (2012) Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact 25(2):200–210

    Article  CAS  PubMed  Google Scholar 

  37. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  38. Nikraftar F, Taheri P, Falahati Rastegar M, Tarighi S (2013) Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiol Mol Plant Pathol 81:74–83

    Article  CAS  Google Scholar 

  39. Adhilakshmi M, Paranidharan V, Balachandar D, Ganesamurthy K, Velazhahan R (2014) Suppression of root rot of mung bean (Vigna radiata L.) by Streptomyces sp. is associated with induction of peroxidase and polyphenol oxidase. Arch Phytopathol Plant Prot 47(5):571–583

    Article  CAS  Google Scholar 

  40. Daayf F, El Hadrami A, El-Bebany AF, Henriquez MA, Yao Z, Derksen H, El Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphenol Res 3:191

    Article  CAS  Google Scholar 

  41. Patil HJ, Srivastava AK, Singh DP, Chaudhari BL, Arora DK (2011) Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Prot 30(10):1269–1273

    Article  CAS  Google Scholar 

  42. Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  43. Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of AM fungi, actinomycetes and plant growth promoting rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbiol App Sci 3(7):564–585

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, National Bureau of Agriculturally Important Microorganisms (Indian Council of Agricultural Research) Uttar Pradesh, India for providing necessary facilities and encouragement during the course of investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra P. Singh.

Ethics declarations

Conflict of interest

The authors declare that there exists no conflict of interest among them.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Gupta, R., Gaur, R. et al. Antagonistic Actinomycetes Mediated Resistance in Solanum lycopersicon Mill. Against Rhizoctonia solani Kühn. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 789–798 (2017). https://doi.org/10.1007/s40011-015-0651-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0651-5

Keywords

Navigation