Skip to main content
Log in

Adsorptive Stripping Voltammetric Technique for Monitoring of Mercury Ions in Aqueous Solution Using Nano Cellulosic Fibers Modified Carbon Paste Electrode

  • Research Article
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

A simple carbon paste electrode modified with nano cellulosic fibers was developed for stripping voltammetric determination of mercury in aqueous solution. Prepared electrode was characterized using cyclic voltammetry and electrochemical impedance spectroscopy. Differential pulse stripping voltammetry in anodic direction was used for quantification of mercury. Experimental and instrumental parameters affecting the voltammetric measurements are optimized i.e. 0.1 M NaOH as supporting electrolyte, 1 mM acetate buffer of pH 3 as accumulating solvent with 10 min accumulation time. The peak current is proportional to the mercury concentration in a range 300–700 ng/ml, with a detection limit of 97 ng/ml. The relative standard deviation is 1.1 % for 400 ng/ml (five replicates). The proposed method was also applied to the determination of mercury in the presence of CTAB, SDS, Triton X-100 as a representative of cationic, anionic and neutral surfactants. The interference study shows that no effect up to 50-fold excess of cadmium, 25-fold of nickel, 100-fold of zinc and fivefold of copper is observed. The results obtained from the modified electrode are more accurate with lower standard deviation than the unmodified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen B, Wang L, Huang X, Wu P (2011) Glassy carbon electrode modified with organic–inorganic pillared montmorillonites for voltammetric detection of mercury. Microchim Acta 172:335–341

    Article  Google Scholar 

  2. Sahoo S, Satpati AK, Reddy AVR (2010) Voltammetric determination of trace levels of Hg in ayurvedic medicine and in cobalt-containing samples using a carbon paste electrode. Anal Sci 26:1309–1312

    Article  Google Scholar 

  3. Richter P, Toral MI, Abbott B (2002) Anodic stripping voltammetric determination of mercury in water by using a new electrochemical flow through cell. Electroanalysis 14:1288–1293

    Article  Google Scholar 

  4. Falandysz J (2012) Comments on determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey. Bull Environ Contam Toxicol 88(5):651–653

    Article  Google Scholar 

  5. Jarzynska G, Falandysz J (2011) The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. J Environ Sci Health A 46(6):569–573

    Article  Google Scholar 

  6. Koulouridakis PE, Kallithrakas-Kontos NG (2004) Selective mercury determination after membrane complexation and total reflection X-ray fluorescence analysis. Anal Chem 76(15):4315–4319

    Article  Google Scholar 

  7. Jeoung M, Choi H (2004) Spectrophotometric determination of trace Hg(II) in cetyltrimethylammonium bromide media. Bull Korean Chem Soc 25(12):1877–1880

    Article  Google Scholar 

  8. Gao E, Liu J (2011) Rapid determination of mercury species in sewage sludge by high-performance liquid chromatography on-line coupled with cold-vapor atomic-fluorescence spectrometry after ultrasound-assisted extraction. Anal Sci 27(6):637–641

    Article  Google Scholar 

  9. Palchetti I, Marrazza G, Mascini M (2001) New procedures to obtain electrochemical sensors for heavy metal detection. Anal Lett 34(6):813–824

    Article  Google Scholar 

  10. Xie X, Stueben D, Berner Z (2005) The application of microelectrodes for the measurements of trace metals in water. Anal Lett 38:2281–2300

    Article  Google Scholar 

  11. Tymecki L, Jakubowska M, Achmatowicz S, Koncki R, Głąb S (2001) Potentiometric thick-film graphite electrodes with improved response to copper ions. Anal lett 34(1):71–78

    Article  Google Scholar 

  12. Trojanowicz M, Mulchandani A, Mascini M (2004) Carbon nanotubes‐modified screen‐printed electrodes for chemical sensors and biosensors. Anal Lett 37:3185–3204

    Article  Google Scholar 

  13. Morales MDLG, Marin MRP, Blezquez LC, Gil EP (2012) Performance of a bismuth bulk rotating disk electrode for heavy metal analysis: determination of lead in environmental samples. Electroanalysis 24:1170–1177

    Article  Google Scholar 

  14. Tyszczuk K, Kamińska AS, Wozniak A (2011) Voltammetric method using a lead film electrode for the determination of caffeic acid in a plant material. Food Chem 125(4):1498–1503

    Article  Google Scholar 

  15. Brahman PK, Ahmad DR, Sweety T, Sadashiv PK (2011) Electrochemical behavior of gatifloxacin at a multiwalled carbon nanotube paste electrode and its interaction with DNA. Crit Rev Anal Chem 31:83–92. doi:10.1515/revac-2011-0032

    Google Scholar 

  16. Thiruppathiraja C, Saroja V, Kamatchiammal S, Adaikkappan P, Alagar M (2011) Development of electrochemical based sandwich enzyme linked immunosensor for Cryptosporidium parvum detection in drinking water. J Environ Monit 13:2782–2787

    Article  Google Scholar 

  17. Mulazımoglu AD, Mulazımoglu IE (2012) Electrochemical properties of MDA/GC electrode and investigation of usability as sensor electrode for determination of que, kae, lut and gal using CV, DPV and SWV. Food Anal Methods 6:141–147. doi:10.1007/s12161-012-9426-2

  18. Afkhami A, Madrakian T, Ghaedi H, Khanmohammadi H (2012) Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite. Electrochim Acta 66:255–264

    Article  Google Scholar 

  19. Javanbakht M, Khoshsafar H, Ganjali MR, Badiei A, Norouzi P, Hasheminasa A (2009) Determination of nanomolar mercury(II) concentration by anodic stripping voltammetry at a carbon paste electrode modified with functionalized nanoporous silica gel. Curr Anal Chem 5:35–41

    Article  Google Scholar 

  20. Goyal RN, Bishnoi S (2012) Surface modification in electroanalysis: past, present and future. Indian J Chem 51(A):205–225

    Google Scholar 

  21. Svancara I, Walcarius A, Kalcher K, Vytras K (2009) Carbon paste electrodes in the new millennium. Cent Eur J Chem 7(4):598–656

    Article  Google Scholar 

  22. Dias FNL, do Carmo DR, Caetano L, Rosa AH (2005) Preconcentration and determination of mercury(II) at a chemically modified electrode containing 3-(2-thioimidazolyl)propyl silica gel. Anal Sci 21(11):1359–1363

    Article  Google Scholar 

  23. Samphao A, Rerkchai H, Jitcharoen J, Nacapricha D, Kalcher K (2012) Indirect determination of mercury by inhibition of glucose oxidase immobilized on a carbon paste electrode. Int J Electrochem Sci 7:1001–1010

    Google Scholar 

  24. Tamer U, Oymak T, Ertaş N (2007) Voltammetric determination of mercury(II) at poly(3-hexylthiophene) film electrode. Effect of halide ions. Electroanalysis 19:2565–2570

    Article  Google Scholar 

  25. Wu KB, Hu SS, Fei JJ, Bai W (2003) Mercury-free simultaneous determination of Cd2+ and Pb2+ at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal Chim Acta 489:215–221

    Article  Google Scholar 

  26. Xu H, Zeng LP, Xing SJ, Xian YZ, Shi GY, Jin LT (2008) Ultrasensitive voltammetric detection of trace lead, and cadmium using MWCNTs-nafion-bismuth composite electrodes. Electroanalysis 20:2644

    Google Scholar 

  27. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Env Sci Tech 39(5):1378–1383

    Article  Google Scholar 

  28. Lam C, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  Google Scholar 

  29. Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valor 1:121–134

    Article  Google Scholar 

  30. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int J Green Nanotechnol 4:1–8

    Article  Google Scholar 

  31. Rajawat DS, Satsangee SP (2011) Voltammetric determination of Pb(II) ions by carbon paste electrode modified with lemon grass powder. Res J Chem Environ 15(3):55–59

    Google Scholar 

  32. Kardam A, Rohit RK, Arora JK, Srivastava S (2012) Artificial neural network modeling for biosorption of Pb(II) ions on nano cellulose fibers. Bionanoscience 2:153–160. doi:10.1007/s12668-012-0045-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. V.G. Das, Director, Prof. L.D. Khemani, Head, Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, for providing necessary research facilities. The authors also gratefully acknowledge Ministry of Human Resource and Development, New Delhi for rendering financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soami Piara Satsangee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajawat, D.S., Kardam, A., Srivastava, S. et al. Adsorptive Stripping Voltammetric Technique for Monitoring of Mercury Ions in Aqueous Solution Using Nano Cellulosic Fibers Modified Carbon Paste Electrode. Natl. Acad. Sci. Lett. 36, 181–189 (2013). https://doi.org/10.1007/s40009-013-0116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-013-0116-4

Keywords

Navigation