Skip to main content

Advertisement

Log in

Wound dressing using graphene quantum dots: a proof of concept

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

The costs and complexity related to effective wound healing treatment are immense. The number of multifactorial aspects related to the treatment of wounds (inflammation, infection, and many others) implies a complex multi-therapeutic approach involving various procedures, including medication and surgery. Regarding medication, there are only a few options, especially to treat chronic wounds. Recently graphene quantum dots have been applied for their potent antimicrobial properties as well as their significant tissue remodeling properties. In this study, we developed a formulation based on graphene quantum dots in the form of as a dry powder for wound healing.

Methods

Graphene quantum dots were produced by top-down technique using graphite as matrix, and fully characterized by Raman spectroscopy, atomic force microscopy, and X-ray diffractometry. The dry powder formulation was produced under aseptic conditions and evaluated in vitro and in vivo.

Results

The results showed that the formulation improved the healing process in both: in vitro and in vivo, with good adherence, healing time and tissue reconstruction. Finally, the results demonstrated that dry powder was very effective against P. aeruginosa, S. epidermidis, C. albicans and C. tropicalis, representing an improvement for wound healing purposes.

Conclusion

The data corroborated the use of the dry powder formulation using graphene quantum dots as matrix as wound dressing, expanding the use of graphene quantum in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available on request to the corresponding author.

References

  • Abbasi S, Sinha S, Labit E, Rosin NL, Yoon G, Rahmani W et al (2020) Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell 27(3):396–412. https://doi.org/10.1016/j.stem.2020.07.008

    Article  CAS  PubMed  Google Scholar 

  • Agren MS, Chvapil M, Franzén L (1991) Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J Surg Res 50:101–105

    Article  CAS  PubMed  Google Scholar 

  • Balabathula P, Whaley SG, Janagam DR, Mittal NK, Mandal B, Thoma LA et al (2020) Lyophilized iron oxide nanoparticles encapsulated in amphotericin B: a novel targeted nano drug delivery system for the treatment of systemic fungal infections. Pharmaceutics 12(3):247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balduit A, Mangogna A, Agostinis C, Zito G, Romano F, Ricci G et al (2020) Zinc oxide exerts anti-inflammatory properties on human placental cells. Nutrients 12(6):1–11

    Article  Google Scholar 

  • Banna AHE, Youssef FS, Elzorba HY, Soliman AM, Mohamed GG, Ismail SH, Mousa MR, Elbanna HA, Osman AS (2022) Evaluation of the wound healing effect of neomycin-silver nanocomposite gel in rats. Int J Immunopathol Pharmacol 36:3946320221113486

    PubMed  Google Scholar 

  • Barros AODS, Ricci-Junior E, Pereira JX, Pikula K, Golokhvast K, Manahães AC, Souza PFN, Alencar LMR, Bouskela E, Santos-Oliveira R (2022) High doses of graphene quantum dots impacts on microcirculation system: An observational study. Eur J Pharm Biopharm 176(July):180–187

    Article  CAS  PubMed  Google Scholar 

  • Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M et al (2021) Graphene-based scaffolds for regenerative medicine. Nanomaterials 11(2):1–41

    Article  Google Scholar 

  • Blanchard C, Brooks L, Beckley A, Colquhoun J, Dewhurst S, Dunman PM (2015) Neomycin sulfate improves the antimicrobial activity of mupirocin-based antibacterial ointments. Antimicrob Agents Chemother 23:862–872

    Google Scholar 

  • Brocke T, Barr J (2020) The history of wound healing. Surg Clin North Am 100(4):787–806

    Article  PubMed  Google Scholar 

  • Chung S, Revia RA, Zhang M (2021) Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater 33(22):1–26

    Article  Google Scholar 

  • Citation NLM, Database L, Library N, Url B (2018) Drug levels and effects effects in breastfed infants effects on lactation and breastmilk substance identification substance name (Md):1–3.

  • Clinical ALSI (2012). Document M27-A4. Ref method broth dilution antifung suscetibility test yeasts

  • Cui WH, Quan X, Tao K, Teng Y, Liu Y, Shi GY (2009) Hou TP Mechanism of action of neomycin on Erwinia carotovora subsp carotovora. Pestic Biochem Phys 95:85–89

    Article  CAS  Google Scholar 

  • de Menezes FD, dos Reis SRR, Pinto SR, Portilho FL, do Vale Chavese Mello F, Helal-Neto E E et al (2019) Graphene quantum dots unraveling: green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Mater Sci Eng C 102:405–414

    Article  Google Scholar 

  • Desjardins-Park HE, Foster DS, Longaker MT (2018) Fibroblasts and wound healing: an update. Regen Med 13(5):491–495

    Article  CAS  PubMed  Google Scholar 

  • dos SantosMatos AP, Lopes DCDXP, Peixoto MLH, da SilvaCardoso V, Vermelho AB, Santos-Oliveira R et al (2020) Development, characterization, and anti-leishmanial activity of topical amphotericin B nanoemulsions. Drug Deliv Transl Res 10(6):1552–1570

    Article  Google Scholar 

  • Fasbender S, Zimmermann L, Cadeddu RP, Luysberg M, Moll B, Janiak C et al (2019) The low toxicity of graphene quantum dots is reflected by marginal gene expression changes of primary human hematopoietic stem cells. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  • Forrest L (1983) Current concepts in soft connective tissue wound healing. Br J Surg 70(3):133–140

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP (2016) Wound healing—a literature review. An Bras Dermatol 91(5):614–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S, DiPietro LA (2010) Critical review in oral biology & medicine: factors affecting wound healing. J Dent Res 89(3):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  • Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Heal CF, van Driel ML, Lepper PD, Banks JL (2014) Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst Rev. 2014 (12).

  • Iannazzo D, Celesti C, Espro C (2021) Recent advances on graphene quantum dots as multifunctional nanoplatforms for cancer treatment. Biotechnol J 16(2):1–41

    Article  Google Scholar 

  • Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122(18):3203–3208

    Article  CAS  PubMed  Google Scholar 

  • Jackson J, Pandey R, Schmitt V (2021) Part 1: evaluation of epigallocatechin gallate or tannic acid formulations of hydrophobic drugs for enhanced dermal and bladder uptake or for local anesthesia effects. J Pharm Sci [internet]. 110(2):796–806. https://doi.org/10.1016/j.xphs.2020.10.001

    Article  CAS  PubMed  Google Scholar 

  • Janout V, Bienvenu C, Schell W, Perfect JR, Regen SL (2015) Molecular umbrella—amphotericin B conjugates. Bioconjugate Chem 26:2168

    Article  CAS  Google Scholar 

  • Karimi K, Odhav A, Kollipara R, Fike J, Stanford C, Hall JC (2017) Acute cutaneous necrosis: a guide to early diagnosis and treatment. J Cutan Med Surg 21(5):425–437

    Article  PubMed  Google Scholar 

  • Kenry, Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155:236–250

    Article  CAS  PubMed  Google Scholar 

  • Kimmel HM, Grant A, Ditata J (2016) The presence of oxygen in wound healing. Wounds 28(8):264–270

    PubMed  Google Scholar 

  • Kortel M, Mansuriya BD, Santana NV, Altintas Z (2020) Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines 11(9):866

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G et al (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130(4):489–493

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Lee JY, Kim J, Yoo JM, Kang I, Kim JJ et al (2020) Graphene quantum dots as anti-inflammatory therapy for colitis. Sci Adv 6(18):1–14

    Article  Google Scholar 

  • Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J (2017) Zinc in wound healing modulation. Nutrients 10:16

    Article  PubMed  PubMed Central  Google Scholar 

  • LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. PMID: 31643176.

  • Magne TM, de Oliveira VT, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R (2022) Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J Nanostruct Chem. 12:693–727

    Article  CAS  Google Scholar 

  • Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically ; Approved Standard, 9th ed., Vol. 32. 2012.

  • Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M et al (2020) Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials: a scope review. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00465

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal MK, Mukherjee S, Joardar N, Roy D, Chowdhury P, Sinha Babu SP (2019) Synthesis of smart graphene quantum dots: a benign biomaterial for prominent intracellular imaging and improvement of drug efficacy. Appl Surf Sci [internet] 495(July):143562

    Article  CAS  Google Scholar 

  • Murphy PS, Evans GRD (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:1–8

    Article  Google Scholar 

  • Wasala, NB, Shi-jie Chen DD (2016) 乳鼠心肌提取 HHS public access. Physiol Behav. 176 (1), 100–106.

  • National Center for Biotechnology Information (2023) PubChem Compound Summary for CID 14806, Zinc Oxide. Retrieved Jan 6, 2023.

  • Omar MTA, Gwada RFM, Shaheen AAM, Saggini R (2017) Extracorporeal shockwave therapy for the treatment of chronic wound of lower extremity: current perspective and systematic review. Int Wound J 14(6):898–908

    Article  PubMed  PubMed Central  Google Scholar 

  • Orecchioni M, Ghosheh Y, Pramod AB, Ley K (2019) Macrophage polarization: different gene signatures in M1(Lps+) vs classically and M2(LPS-) vs alternatively activated macrophages. Front Immunol 10:1–14

    Article  Google Scholar 

  • Pan X, Zheng Y, Chen R, Qiu S, Chen Z, Rao W et al (2019) Cocrystal of sulfamethazine and p-aminobenzoic acid: structural establishment and enhanced antibacterial properties. Cryst Growth Des 19(4):2455–2460

    Article  CAS  Google Scholar 

  • Pandit S, Gaska K, Kádár R, Mijakovic I (2021) Graphene-based antimicrobial biomedical surfaces. ChemPhysChem 22(3):250–263

    Article  CAS  PubMed  Google Scholar 

  • Rajendiran K, Zhao Z, Pei DS, Fu A (2019) Antimicrobial activity and mechanism of functionalized quantum dots. Polymers 11:1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter AR, Carneiro MJ, de Sousa NA, Pinto VPT, Freire RS, de Sousa JS et al (2020) Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. Int J Biol Macromol [internet]. 152:492–502. https://doi.org/10.1016/j.ijbiomac.2020.02.166

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PG, Felix FN, Woodley DT, Shim EK (2008) The role of oxygen in wound healing: a review of the literature. Dermatologic Surg 34(9):1159–1169

    CAS  Google Scholar 

  • Safina I, Bourdo SE, Algazali KM, Kannarpady G, Watanabe F, Vang KB et al (2020) Graphene-based 2D constructs for enhanced fibroblast support. PLoS One [internet]. 15(5):1–16. https://doi.org/10.1371/journal.pone.0232670

    Article  CAS  Google Scholar 

  • Samples N (2021) Mechanical properties of green synthesized graphene. Appl Sci.

  • Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19(2):134–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheferov I, Balakireva A, Panteleev D, Spitskaya I, Orekhov S, Kazantsev O, Solovyeva A, Novopoltsev D, Melnikova N (2022) The effect of zinc oxide nanoparticles on properties and burn wound healing activity of thixotropic xymedone gels. Sci Pharm 90:61

    Article  CAS  Google Scholar 

  • Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A et al (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev [internet]. 105:255–274. https://doi.org/10.1016/j.addr.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AJ, Clark RAF (1999) Epstein1999_Woundhealing. N Engl J Med.

  • Singh M, Jonnalagadda S (2021) Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications. J Mater Sci Mater Med [internet]. 32(4):1–13. https://doi.org/10.1007/s10856-021-06509-7

    Article  CAS  Google Scholar 

  • Stone NR, Bicanic T, Salim R, Hope W (2016) Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76:485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V (2018) Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats [Internet]. J Colloid Interface Sci 517:251–264. https://doi.org/10.1016/j.jcis.2018.01.110

    Article  CAS  PubMed  Google Scholar 

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8):1–30

    Article  Google Scholar 

  • Troncoso OP, Torres FG (2020) Bacterial cellulose—graphene based nanocomposites. Int J Mol Sci 21(18):1–17

    Article  Google Scholar 

  • Ur Rehman SR, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A (2019) Reduced graphene oxide incorporated gelma hydrogel promotes angiogenesis for wound healing applications. Int J Nanomed 14:9603–9617

    Article  Google Scholar 

  • Veirup N, Kyriakopoulos C (2022) Neomycin. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing.

  • Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kadiyala U, Qu Z, Elvati P, Altheim C, Kotov NA, Violi A, VanEpps JS (2019) Anti-biofilm activity of graphene quantum dots via self-assembly with bacterial amyloid proteins. ACS Nano 3:4278–4289

    Article  Google Scholar 

  • Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chen Z, Pan D, Li H, Shen J (2020) Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomed 15:5911–5926

    Article  CAS  Google Scholar 

  • Zhang Q, Wu T, Li S, Meng Y, Tan Z, Wu M, Yi D, Wang L, Zhao D, Hou Y (2021) Protective effect of zinc oxide and its association with neutrophil degranulation in piglets infected with porcine epidemic diarrhea virus. Oxid Med Cell Longev 23:3055810

    Google Scholar 

  • Zhao C, Song X, Liu Y, Fu Y, Ye L, Wang N et al (2020) Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnol 18:1–32

    Article  CAS  Google Scholar 

  • Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Carlos Chagas Filho Foundation for Research Support of Rio de Janeiro State (FAPERJ) (Cientista do Nosso Estado: E-26/200.815/2021; Rede NanoSaude: E-26/010.000981/2019, Pesquisa na UEZO: E-26/010.002362/2019; Temáticos: E-26/211.269/2021, Infraestrutura e Pesquisa na UEZO e UERJ: E-26//211.207/2021, Bolsa de Pós-doutorado Senior (PDS): E-26/202.320/2021) CNPq (Bolsa de Produtividade 1B: 301069/2018-2) to Ralph Santos-Oliveira.

Author information

Authors and Affiliations

Authors

Contributions

VGFCM: Conceptualization, Methodology, Formal Analysis, Investigation, Data Curation. LMRA: Formal Analysis, Software, Validation. PFNS: Formal Analysis, Investigation, Resources, Data Curation. CMAL: Methodology, Software, Validation, Formal Analysis. HFF: Methodology, Software, Validation, Formal Analysis. ALSdS: Conceptualization, Methodology, Investigation, Funding Acquisition, Writing—Original Draft. SG-P: Methodology, Software, Validation, Formal Analysis.VM: Conceptualization, Methodology, Investigation, Funding Acquisition, Writing—Original Draft. VGR: Methodology, Software, Validation, Formal Analysis. JXP: Methodology, Software, Validation, Formal Analysis. ER-J: Conceptualization, Methodology, Investigation, Funding Acquisition, Writing—Original Draft. AOdSdB: Conceptualization, Methodology, Formal Analysis, Investigation, Resources, Data Curation, Visualization, Supervision, RS-O: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data Curation, Visualization, Supervision, Funding Acquisition, Writing—Original Draft.

Corresponding author

Correspondence to Ralph Santos-Oliveira.

Ethics declarations

Conflict of interest

All authors (V.G.F.C. Martins, L.M.R. Alencar, P.F.N. Souza, C.M.A. Lorentino, H.F. Frota, A.L.S. dos Santos, S. Gemini‑Piperni, V. Morandi, V.G. Rodrigues, J.X. Pereira, E. Ricci‑Junior, A.O.S. de Barros, and R. Santos‑Oliveira) declare no conflicts of interest.

Ethical approval

All procedures were approved by the Zona Oeste State University Animal Care and Use Committee (Rio de Janeiro, RJ, Brazil; protocol number CEUA 8059100220/2021), and were consistent with United States National Institute of Health Guide for Care and Use of Laboratory Animals (National Research Council, 1996).

Consent for publication

All authors consent to the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, V.G.F.C., Alencar, L.M.R., Souza, P.F.N. et al. Wound dressing using graphene quantum dots: a proof of concept. J. Pharm. Investig. 53, 333–342 (2023). https://doi.org/10.1007/s40005-023-00612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00612-3

Keywords

Navigation