Skip to main content

Advertisement

Log in

Silica-coated solid lipid nanoparticles enhance antioxidant and antiradical effects of meloxicam

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Oxidative stress and decreased antioxidant status are the hallmarks in patients suffering from rheumatoid arthritis. A targeted nanocarrier can enhance the therapeutic efficacy of meloxicam, a preferential cyclooxygenase-2 inhibitor with potential suppressive effects on free-radical mediated damage. Silica-coated solid lipid nanoparticles of meloxicam were fabricated by melt emulsification ultrasound homogenization technique and characterized for formation, morphology, morphometrical properties, drug entrapment, drug release pattern and storage stability. The in vitro antioxidant potential of lipid nanoparticles was evaluated by various antiradical and antioxidant assays including 1,1-diphenyl-2-picryl-hydrazil free radical scavenging, nitric oxide radical inhibition, lipid peroxidation, hydroxyl radical scavenging and superoxide anion radical scavenging activity. Lipid nanoparticles were successfully characterized for morphometrical parameters by photon correlation spectroscopy measurements. Transmission electron microscopy and atomic force microscopy studies confirmed the production of lipid nanoparticles. Meloxicam was successfully encapsulated within the lipid matrix as indicated by high drug entrapment efficiency, Fourier transform infrared spectroscopy and powder X-ray diffraction studies. The drug release from lipid nanoparticles exhibited a biphasic release pattern with good storage stability. Free radical scavenging activity of silica-coated meloxicam loaded solid lipid nanoparticles in all assays was higher than the free drug and was found to increase in a dose dependent manner. A nanocarrier based delivery system of meloxicam potentiates its free radical suppression effects and can further enhance its therapeutic efficacy in the management of rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agha AM, El-Khatib AS, Al-Zuhair H (1999) Modulation of oxidant status by meloxicam in experimentally induced arthritis. Pharmacol Res 40(4):385–392

    Article  PubMed  CAS  Google Scholar 

  • Ah YC, Choi JK, Choi YK, Ki HM, Bae JH (2010) A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm 385:12–19

    Article  PubMed  CAS  Google Scholar 

  • Ali H, Shirode A, Sylvester PW, Nazzal S (2010) Preparation and in vitro antiproliferative effect of tocotrienol loaded lipid nanoparticles. Colloids Surf A Physiochem Eng Aspects 353:43–51

    Article  CAS  Google Scholar 

  • Ambrus R, Kocbek P, Kristl J, Sibanc R, Rajko R, Szabo-Revesz P (2009) Investigation of preparation parameters to improve the dissolution of poorly water-soluble meloxicam. Int J Pharm 381:153–159

    Article  PubMed  CAS  Google Scholar 

  • Anandjiwala SH, Srinivasa K, Rajani M (2007) Free radical scavenging activity of Bergia suffruticosa (Delile) Fenzl. J Nat Med 61:59–62

    Article  CAS  Google Scholar 

  • Chan P, Cheng JT, Tsao CW, Niu CS, Hong CY (1996) The in vitro antioxidant activity of trilinolein and other lipid-related natural substances as measured by enhanced chemiluminescence. Life Sci 59(24):2067–2073

    Article  PubMed  CAS  Google Scholar 

  • Cho KH, Hong JH, Lee KT (2010) Monoacylglycerol (MAG)–oleic acid has stronger antioxidant, anti-atherosclerotic, and protein glycation inhibitory activities than MAG–palmitic acid. J Med Food 13(1):99–107

    Article  PubMed  CAS  Google Scholar 

  • Dannhardt G, Kiefer W (2001) Cyclooxygenase inhibitors-current status and future prospects. Eur J Med Chem 36:109–126

    Article  PubMed  CAS  Google Scholar 

  • Desai PB, Manjunath S, Kadi S, Chetana K, Vanishree J (2010) Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: a case control study. Eur Rev Med Pharmacol Sci 14:959–967

    PubMed  Google Scholar 

  • Elnaggar YSR, El-Massik MA, Abdallah OY (2011) Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int J Nanomedicine 6:3195–3205

    Article  PubMed  CAS  Google Scholar 

  • Firestein GS (2005) Etiology and pathogenesis of rheumatoid arthritis. In: Edward D, Genovese MC, Firestein GS, Sargent JS, Sledge CB (eds) Kelley’s textbook of rheumatology, 9th edn. Elsevier Saunders, Philadelphia, pp 996–1042

    Google Scholar 

  • Freitas C, Muller RH (1999) Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47(2):125–132

    Article  PubMed  CAS  Google Scholar 

  • Frey O, Petrow PK, Gajda M et al (2005) The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4 + CD25 + T cells. Arthritis Res Ther 7:R291–R301

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a sample test tube assay for determination of rate constant for reaction of hydroxyl radicals. Anal Biochem 165:215–219

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, Peng X (2011) Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box–Behnken design. Int J Nanomedicine 6:683–692

    PubMed  CAS  Google Scholar 

  • Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    Article  PubMed  Google Scholar 

  • Hofkens W, Storm G, Vanden Berg WB, VanLent PL (2011) Liposomal targeting of glucocorticoids to the inflamed synovium inhibits cartilage matrix destruction during murine antigen induced arthritis. Int J Pharm 416(2):486–492

    Article  PubMed  CAS  Google Scholar 

  • Hoven JM, Tomme SRV, Metselaar JM, Nuijen B, Beijnen JH, Storm J (2011) Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm 8:1002–1015

    Article  PubMed  Google Scholar 

  • Joshi M, Patravale V (2008) Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 346:124–132

    Article  PubMed  CAS  Google Scholar 

  • Ki HM, Choi HK (2007) The effect of meloxicam/ethanolamine salt formation on percutaneous absorption of meloxicam. Arch Pharm Res 30(2):215–221

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Jeong SM, Park WP, Nam KC, Ahn DU, Lee SC (2006) Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem 97:472–479

    Article  CAS  Google Scholar 

  • Mai W, Chen D, Li X (2012) Antioxidant activity of Rhizoma Cibotii in vitro. Adv Pharm Bull 2(1):107–114

    CAS  Google Scholar 

  • Mira EG, Nikolic S, Garcia ML, Egea MA, Souto EB, Calpena AC (2011) Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. J Pharm Sci 100(1):242–250

    Article  Google Scholar 

  • Mitragotri S, Yoo JW (2011) Designing micro- and nano-particles for treating rheumatoid arthritis. Arch Pharm Res 34(11):1887–1897

    Article  PubMed  CAS  Google Scholar 

  • Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, Buzas E, Perl A (2010) Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 12(3):210

    Article  PubMed  Google Scholar 

  • Pham CTN (2011) Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Nanomed Nanotechnol 3:607–619

    Article  CAS  Google Scholar 

  • Quan L, Thiele GM, Tian J, Wang D (2008) The development of novel therapies for rheumatoid arthritis. Expert Opin Ther Pat 18(7):723–738

    Article  PubMed  CAS  Google Scholar 

  • Shaji J, Varkey D (2012) Development and validation of a reverse phase-HPLC method for determination of meloxicam in pharmaceutical dosage forms and human plasma. Int J Pharm Sci Rev Res 12(1):152–160

    CAS  Google Scholar 

  • Tanaka A, Mizoguchi H, Kunikata T, Miyazawa T, Takeuchi K (2001) Protection by constitutively formed nitric oxide of intestinal damage induced by indomethacin in rats. J Physiol Paris 95:35–41

    Article  PubMed  CAS  Google Scholar 

  • Turini ME, Dubois RN (2002) Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53:35–57

    Article  PubMed  CAS  Google Scholar 

  • Unni MK, Karthikeyan J (2004) Evaluation of antioxidant properties of berries. Indian J Clin Biochem 19:103–110

    Article  PubMed  Google Scholar 

  • Verma N, Tripathi SK, Sahu D, Das HR, Das RH (2010) Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages. Mol Cell Biochem 336(1–2):127–135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article dose not contain any studies with human and animal subjects performed by any of the authors. And all authors (J. Shaji and D. Varkey) declare that they have no conflict of interest. We highly acknowledge the financial support received from University Grants Commission, New Delhi. We also thank Dr. G. Krishnamurthy, Senior Professor, Department of Chemical Sciences, TIFR, Mumbai for granting permission to use the AFM facility and Mrs. Mamta Kombrabail, officer in charge, Department of Chemical Sciences, TIFR for her help in conducting the AFM study. The technical assistance of Mr. Rakesh Barik is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessy Shaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaji, J., Varkey, D. Silica-coated solid lipid nanoparticles enhance antioxidant and antiradical effects of meloxicam. Journal of Pharmaceutical Investigation 43, 405–416 (2013). https://doi.org/10.1007/s40005-013-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-013-0085-0

Keywords

Navigation