Skip to main content
Log in

Adaptation of Human Testicular Niche Cells for Pluripotent Stem Cell and Testis Development Research

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Human testicular cells are greatly valuable to the research community as tools for studying testicular physiology and the effects of environmental pollutants. Because adult testicular cells have a limited self-organization capacity and life span, we investigated whether human pluripotent stem cells (hPSCs) can be used together with testicular cells to move a step closer toward making an optimal model of the human testis.

Methods:

We used in vitro culture of donor testicular cells under serum-containing and chemically defined conditions. CRISPR-Cas9 technology was applied to introduce fluorescent transgenes (mCherry2 and EGFP) into hPSCs and testicular cells. hPSC-derived spheroids were co-cultured with human testicular cells in mini-spin bioreactors.

Results:

Traditional cell culture conditions used for maintenance of testicular somatic cells generally contain serum and pose limitations on evaluating the role of active molecules on cell functions. We established that chemically defined culture conditions can be used to maintain testicular cells without the loss of proliferative activity. These cultures demonstrate marker expression which is characteristic of common testicular cell types: Sertoli, Leydig, endothelial, myoid cells, and macrophages. In order to model testicular physiology, it is important to be able to perform live cell microscopy. Thus, we generated fluorescent protein-expressing human testicular cells and hPSCs and demonstrated that these cell types can be successfully co-cultured for prolonged periods of time in a three-dimensional microenvironment.

Conclusion:

Our research extends the possible applications of human testis-derived somatic cells and shows that they can be used together with hPSCs for further studies of human male reproductive biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Messerlian C, Williams PL, Ford JB, Chavarro JE, Mínguez-Alarcón L, Dadd R, et al. The environment and reproductive health EARTH study: a prospective preconception cohort. Hum Reprod Open. 2018;2018:hoy001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23:646–59.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson A-M, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.

    Article  CAS  PubMed  Google Scholar 

  4. Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104.

    Article  CAS  PubMed  Google Scholar 

  5. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod. 2017;96:720–32.

    Article  PubMed  Google Scholar 

  6. Sakib S, Uchida A, Valenzuela-Leon P, Yu Y, Valli-Pulaski H, Orwig K, et al. Formation of organotypic testicular organoids in microwell culture†. Biol Reprod. 2019;100:1648–60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baert Y, De Kock J, Alves-Lopes JP, Söder O, Stukenborg JB, Goossens E. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Reports. 2017;8:30–8.

    Article  CAS  PubMed  Google Scholar 

  8. Richer G, Baert Y, Goossens E. In-vitro spermatogenesis through testis modelling: towards the generation of testicular organoids. Andrology. 2019. https://doi.org/10.1111/andr.12741.

    Article  Google Scholar 

  9. Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    Article  CAS  PubMed  Google Scholar 

  10. Lancaster MA, Huch M. Disease modelling in human organoids. Dis Model Mech. 2019;12:dmm039347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.

    Article  PubMed  CAS  Google Scholar 

  12. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150:1098–112.

    Article  PubMed  Google Scholar 

  13. Rodríguez Gutiérrez D, Eid W, Biason-Lauber A. A human gonadal cell model from induced pluripotent stem cells. Front Genet. 2018;9:498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hou YP, Zhang ZY, Xing XY, Zhou J, Sun J. Direct conversion of human fibroblasts into functional Leydig-like cells by SF-1, GATA4 and NGFI-B. Am J Transl Res. 2018;10:175–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sepponen K, Lundin K, Knuus K, Väyrynen P, Raivio T, Tapanainen JS, et al. The role of sequential BMP signaling in directing human embryonic stem cells to bipotential gonadal cells. J Clin Endocrinol Metab. 2017;102:4303–14.

    Article  PubMed  Google Scholar 

  16. Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013;27:2409–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rey R, Josso N, Racine C. Sexual Differentiation. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Endotext. South Dartmouth : MDText.com, Inc.; 2000.

    Google Scholar 

  18. Irie N, Surani MA. Efficient induction and isolation of human primordial germ cell-like cells from competent human pluripotent stem cells. Methods Mol Biol. 2017;1463:217–26.

    Article  CAS  PubMed  Google Scholar 

  19. Mitsunaga S, Odajima J, Yawata S, Shioda K, Owa C, Isselbacher KJ, et al. Relevance of iPSC-derived human PGC-like cells at the surface of embryoid bodies to prechemotaxis migrating PGCs. Proc Natl Acad Sci U S A. 2017;114:E9913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu YC, Nicholls PK, Soh YQ, Daniele JR, Junker JP, van Oudenaarden A, et al. Licensing of primordial germ cells for gametogenesis depends on genital ridge signaling. PLoS Genet. 2015;11:e1005019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fang F, Li Z, Zhao Q, Li H, Xiong C. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod. 2018;33:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling zikv exposure. Cell. 2016;165:1238–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Reports. 2018;11:470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92:577–95.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida S. Open niche regulation of mouse spermatogenic stem cells. Dev Growth Differ. 2018;60:542–52.

    Article  CAS  PubMed  Google Scholar 

  26. Wen L, Yuan Q, Sun M, Niu M, Wang H, Fu H, et al. Generation and characteristics of human Sertoli cell line immortalized by overexpression of human telomerase. Oncotarget. 2017;8:16553–70.

    PubMed  PubMed Central  Google Scholar 

  27. Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc. 2018;13:565–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pryzhkova MV, Aria I, Cheng Q, Harris GM, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, et al. The adult human testis transcriptional cell atlas. Cell Res. 2018;28:1141–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8:424–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teerds KJ, Huhtaniemi IT. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update. 2015;21:310–28.

    Article  CAS  PubMed  Google Scholar 

  32. Guo Y, Hai Y, Yao C, Chen Z, Hou J, Li Z, et al. Long-term culture and significant expansion of human Sertoli cells whilst maintaining stable global phenotype and AKT and SMAD1/5 activation. Cell Commun Signal. 2015;13:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mori H, Hiromoto N, Nakahara M, Shiraishi T. Stereological analysis of Leydig cell ultrastructure in aged humans. J Clin Endocrinol Metab. 1982;55:634–41.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B, Schüle B, et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 2014;42:e34.

    Article  CAS  PubMed  Google Scholar 

  35. Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet. 2004;5:509–21.

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Workman S, Wilson M. The molecular pathways underlying early gonadal development. J Mol Endocrinol. 2018.https://doi.org/10.1530/JME-17-0314.

    Google Scholar 

  37. Kumar SV, Er PX, Lawlor KT, Motazedian A, Scurr M, Ghobrial I, et al. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development. 2019;146:dev172361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Taguchi A, Nishinakamura R. Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell. 2017;21:730-46.e6.

  39. Hiramatsu R, Harikae K, Tsunekawa N, Kurohmaru M, Matsuo I, Kanai Y. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development. 2010;137:303–12.

    Article  CAS  PubMed  Google Scholar 

  40. de Santa Barbara P, Moniot B, Poulat F, Berta P. Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn. 2000;217:293–8.

    Article  Google Scholar 

  41. Croft B, Ohnesorg T, Hewitt J, Bowles J, Quinn A, Tan J, et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat Commun. 2018;9:5319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeFalco T, Takahashi S, Capel B. Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol. 2011;352:14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu C, Rodriguez K, Yao HH. Mapping lineage progression of somatic progenitor cells in the mouse fetal testis. Development. 2016;143:3700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Riesenberg S, Maricic T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun. 2018;9:2164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015;16:142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, et al. Methodologies for improving HDR efficiency. Front Genet. 2018;9:691.

    Article  CAS  PubMed  Google Scholar 

  47. Easley CA 4th, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2012;2:440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lim JJ, Shim MS, Lee JE, Lee DR. Three-step method for proliferation and differentiation of human embryonic stem cell (hESC)-derived male germ cells. PLoS One. 2014;9:e90454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Durruthy Durruthy J, Ramathal C, Sukhwani M, Fang F, Cui J, Orwig KE, et al. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum Mol Genet. 2014;23:3071–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oliver E, Stukenborg JB. Rebuilding the human testis in vitro. Andrology. 2019. https://doi.org/10.1111/andr.12710.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Young JC, Wakitani S, Loveland KL. TGF-β superfamily signaling in testis formation and early male germline development. Semin Cell Dev Biol. 2015;45:94–103.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang X, Skibba M, Zhang C, Tan Y, Xin Y, Qu Y. The roles of fibroblast growth factors in the testicular development and tumor. J Diabetes Res. 2013;2013:489095.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Immanuel Rasool from WRTC for coordinating the acquisition of deidentified human testis samples used for this study, Stephen Wellard for technical assistance, Ran Brosh for providing the EF1α promoter sequence, and Barry Zirkin and JinYong Chung for discussion. This work was supported by a KY Cha Award In Stem Cell Technology from the American Society for Reproductive Medicine and a research grant from National Institute of General Medical Sciences (R01GM11755), both awarded to P.W.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Jordan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical statement

The use of human ESC line was approved by the JHU institutional stem cell research oversight committee (protocol ISCRO00000089). Deidentified donor testes tissues were designated as “not human subjects research” by Johns Hopkins University (JHU IRB No: 00006700).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryzhkova, M.V., Jordan, P.W. Adaptation of Human Testicular Niche Cells for Pluripotent Stem Cell and Testis Development Research. Tissue Eng Regen Med 17, 223–235 (2020). https://doi.org/10.1007/s13770-020-00240-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00240-0

Keywords

Navigation